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Conformational transitions of heteropolymers in dilute solutions

E. G. Timoshenko,* Yu. A. Kuznetsov, and K. A. Dawson
Theory and Computation Group, Irish Centre for Colloid Science and Biomaterials,† Department of Chemistry,

University College Dublin, Belfield, Dublin 4, Ireland
~Received 4 August 1997!

In this paper we extend the Gaussian self-consistent method to permit study of the equilibrium and kinetics
of conformational transitions for heteropolymers with any given primary sequence. The kinetic equations
earlier derived by us are transformed to a form containing only the mean-squared distances between pairs of
monomers. These equations are further expressed in terms of instantaneous gradients of the variational free
energy. The method allowed us to study exhaustively the stability and conformational structure of some
periodic and random aperiodic sequences. A typical phase diagram of a fairly long amphiphilic heteropolymer
chain is found to contain phases of the extended coil, the homogeneous globule, the microphase separated
globule, and a large number of frustrated states, which result in conformational phases of the random coil and
the frozen globule. We have also found that for a certain class of sequences the frustrated phases are sup-
pressed. The kinetics of folding from the extended coil to the globule proceeds through nonequilibrium states
possessing locally compacted, but partially misfolded and frustrated, structure. This results in a rather compli-
cated multistep kinetic process typical of glassy systems.@S1063-651X~98!16005-1#

PACS number~s!: 36.20.Ey, 87.15.By
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I. INTRODUCTION

The study of the conformational transitions of heteropo
mers in dilute solutions is important for many applicatio
from the chemical industry to biotechnology. Directed mo
towards the former, there has been a significant amoun
theoretical work carried out on concentrated copolymer
lutions, mixtures, and blends@1–9# using various types of the
density formalism. However, these approaches are not v
at infinitely low dilution where the fundamental interactio
of the individual macromolecule determine its conform
tional state. This situation is more relevant for biochemis
The problem is even harder to address at nonequilibr
conditions typical for biopolymersin vivo @10#.

For these reasons we have been working for some tim
developing an adequate statistical mechanical technique
studying the equilibrium structure and kinetics across ph
transitions in heteropolymers@11–13#. The main idea was to
extend the Gaussian self-consistent~GSC! method, originally
proposed for the homopolymer~see, e.g.,@14# and references
therein!, to the case of inhomogeneous monomer inter
tions. This has been achieved in Ref.@11# where we have
derived the complete set of nonlinear kinetic equations
complex valued equal-time correlation functions of the Fo
rier transforms of the monomer coordinates. There we h
analyzed in some detail the simplest periodic (ab) copoly-
mer, but study of more complicated sequences remained
of our practical computational reach. The relation of the
netic equations to the equilibrium free energy, as well as
expression for the entropy, were also unknown to us at
stage. Thus, the phase diagrams have not been elucidate
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certain other important issues have not been addressed in
work.

In Refs. @12,13# we have achieved further progress a
resolved most of these questions, albeit at the cost of loo
detailed information about individual sequences. Namely,
have performed averaging of the GSC equations over
quenched disorder in the monomer amphiphilic streng
This yielded a closed set of kinetic equations for descript
of random copolymers with a Gaussian distribution of t
disorder. Such an idealized system is very interesting in
self, particularly since there is hope that its study could sh
light on some features of the extremely complex problem
protein folding@10#.

To render the quenched disorder problem more tracta
certain perturbative approximation was necessary@12#. It be-
came clear in Ref.@13# that this causes some deficiencies
the equilibrium limit of the formalism, and we have allude
to how these could be alleviated in higher orders of the
pansion.

Therefore, it seems important to revisit the general f
malism of Ref.@11# in order to resolve remaining difficulties
maintaining the rich information about particular sequen
and avoiding any further approximations. Furthermore, th
exists, till now, no simple theoretical procedure capable
giving the equilibrium conformational states of a heteropo
mer with arbitrary sequence, that can in a consistent man
also give the full kinetic pathway between these states.
work presented here achieves this. To demonstrate
strength of the extended GSC method we consider a num
of interesting examples of heteropolymer sequences. Dif
ent kinds of interactions, such the hydrodynamic interacti
may be straightforwardly incorporated into the scheme.
rich and nontrivial physical picture emerges as a result
this theoretical progress.

II. THE BEAD-AND-SPRING MODEL

Traditionally, we proceed from the coarse-grained d
scription of the polymer chain@2–4# with the spatial coordi-

te:

-
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natesXn ascribed to thenth monomer. It is assumed that th
long-time-scale evolution of conformational changes is w
represented by the phenomenological Langevin equat
which upon neglecting the backflow effect of the solve
may be written as

zb

d

dt
Xn52

]H

]Xn
1hn~ t !, ~1!

wherezb is the ‘‘bare’’ friction constant per monomer. For
discussion of the hydrodynamic interaction we refer
reader to Appendix A. The thermal fluctuations are incorp
rated via the Gaussian noise which, according to the Eins
law, is characterized by the second momentum,

^hn
a~ t !hn8

a8~ t8!&52kBTzbda,a8dn,n8d~ t2t8!, ~2!

where the Greek indices denote the spatial component
three dimensional~3D! vectors.

In the current treatment the solvent is effectively exclud
from the consideration@15# and the resulting monomer inte
actions are described by the effective free energy functio

H5
k

2 (
n

~Xn2Xn21!21
k

2 (
n

~Xn111Xn2122Xn!2

1 (
J52

`

(
$n%

u$n%
~J! )

i 51

J21

d~Xni 11
2Xn1

!, ~3!

where, in principle,u$n%
(J) are allowed to have any dependen

on the site indices$n%[$n1 , . . . ,nJ%.
The first two terms in Eq.~3! describe the connectivity

and the stiffness of the chain. Their coefficients have
following simple meaning:k5kBT/ l 2 andk5kBTl/ l 3 with
l andl called the statistical segment length and the per
tent length @4,16#, respectively. Apart from these intera
tions, local along the chain, there are also long-range volu
interactions represented by the virial-type expansion@2,3# in
Eq. ~3!. The latter reflects the hard-core repulsion and we
attraction between monomers, but also the effective inte
tion mediated by the solvent-monomer couplingsI n .

The coefficients in this expansion may be calculated
functions of the temperature and the parameters of molec
interaction. However, for our purposes we do not need
know their explicit form here as we shall keep only a fe
first terms. Appropriate coefficients then may be viewed
independent phenomenological parameters that could be
rectly related to experimentally measurable quantities.

In Refs. @11,13# we have discussed that the case of a
phiphilic heteropolymers, for which monomers differ only
the monomer-solvent coupling constants, corresponds to
following choice of site-dependent second virial coefficie
in Eq. ~3!,

unn8
~2!

5ū~2!1 1
2 ~ I n1I n8!, (

n
I n50. ~4!

The mean second virial coefficientū(2) is associated with the
quality of the solvent: positive values correspond to the go
solvent ~where effective two-body repulsion of monome
results in the extended coil conformation!, and the negative
ll
n,
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values correspond to the bad solvent condition~where the
effective two-body attraction tends to compact the chain!.

The set of couplings$I n% expresses the chemical comp
sition, or using the biological terminology, the primary s
quence of a heteropolymer. For simplicity, in the consequ
sections we shall consider examples for which these c
stants can be parametrized in a simple way:I n5Dsn , where
variablessn can only take three values:21, 1, or 0 corre-
sponding to~a! hydrophobic ,~b! hydrophilic, and~c! ‘‘neu-
tral’’ monomers, respectively. The parameterD is called the
degree of amphiphilicity of the chain. Note that for mo
complicated than binary sequences there is another rele
dispersion, (Ds)25(1/N)(msm

2 , and the combinationDDs

is a more appropriate variable.

III. THE GSC KINETIC EQUATIONS

In Ref. @11# we have derived a set~18! of the GSC kinetic
equations for the equal-time correlation functions of the F

rier transforms of monomer coordinatesFq
AA8(t). There, at

the end of Sec. II, we have mentioned that a polymer with
periodic structure may be described by choosing the num
of blocksM51. The equations for the correlation function

Fmm8~ t ![ 1
3 ^Xm~ t !Xm8~ t !&, ~5!

contain some redundancies and also are intermixed with
diffusive degree of freedom describing the motion of t
center of mass. Obviously, for a single chain the latter can
easily decoupled from the intramolecular degrees of freed
by introducing the mean-squared distances between pai
monomers,

Dmm8~ t ![ 1
3 ^~Xm~ t !2Xm8~ t !!2&5Fmm1Fm8m822Fmm8.

~6!

It turns out that, from Eq.~18! in Ref. @11#, after certain
algebraic manipulations one can obtain a closed set of e
tions for the quantitiesDmm8(t).

Taking into account the additional bending energy con
bution in Eq.~3!, the GSC equations may be written down
the most general form as follows:

zb

2

d

dt
Dmm852kBT~12dmm8!1k„Dmm8,m11m1Dmm8,m21m

1~m↔m8!…2k„Dmm8,m12m11

1Dmm8,m22m2123Dmm8,m21m23Dmm8,m11m

1~m↔m8!…1 (
J52

`

(
$n%

û$n%
~J!

~detD~J21!!5/2

3 (
i , j 51

J21

D̄ i j
~J21!~dn1

m 1dni 11

m8 2dni 11

m 2dn1

m8!

3Dmm8,n1nj 11
, ~7!

where we have introduced the four-point correlation fun
tions, Dmm8,nn8, and the matrixD i j

(J21) of size (J21) with

the cofactorD̄ i j
(J21) ,
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57 6803CONFORMATIONAL TRANSITIONS OF . . .
Dmm8,nn8[2 1
2 ~Dmn1Dm8n82Dmn82Dm8n!, ~8!

D i j
~J21![Dn1ni 11 ,n1nj 11

. ~9!

Similarly to Eq. ~31! in Ref. @11# for the mean energyE
5^H& we have

E5
3k

2 (
n

Dnn21,nn211
3k

2 (
n

~2Dn11n,n11n

12Dn21n,n21n2Dn21n11,n21n11!

1 (
J52

`

(
$n%

û$n%
~J!~detD~J21!!23/2. ~10!

It is interesting to note that in the case of the homopo
mer the right-hand side of the kinetic equations~7! may be
rewritten via the instantaneous gradients of the variatio
free energy by introducing the normal modes@see Eq.~5! in
Ref. @17##. This establishes the connection of the station
limit of our kinetic approach with the equilibrium theory, i
which we recover the Gibbs-Bogoliubov variational pri
ciple. We also note that if first order phase transitions
involved, one has to possess the expression for the free
ergy in order to determine the phase boundaries by find
the global free energy minimum.

The variational free energyA based on the Gaussian a
satz for equal-time pair correlation functions contains t
terms,A5E2TS. Naturally, the mean energy term is give
by Eq. ~10!. The second, entropic contribution is calculat
in Appendix B. Let us summarize the result of that calcu
tion here. One representation for the entropy that is suita
for numerical analysis is

S5 3
2 kBln detR~N21!5 3

2 kBlnS detD$1•••N%
~N21!

N2 D , ~11!

where we have used the determinant of t
(N21)-dimensional major submatrix of the matrix,

Rnn85
1

N2 (
mm8

Dnm,n8m852
1

2
L0

•D•L0, ~12!

and the matrixD obviously has the elements equal toDnn8.
The reason for appearance of the truncated matrix is tha
have excluded the zero eigenvalue ofR related to the trans
lational invariance. Here we have also introduced theN
21)-dimensional orthogonal projectorL0 such that

~L0!25L0, ~L0!T5L0 , (
n

~L0!nk50, ~13!

with the matrix elements (L0)nk5dn,k21/N. This matrix
has obviously one zero eigenvalue andN21 degenerate ei
genvalues equal to 1.

However, for analytical treatment it is more convenient
obtain a slightly different expression by regularizing the ze
eigenvalue@i.e., by imposing the constraint(nXn50 as a
‘‘soft’’ condition in Eq. ~B1!#,
-

al

y

e
n-
g

-
le

e

o

S5
3

2
kB lim

e→0
ln

det~R1e1!

e
. ~14!

Since the matrix (R1e1) is nondegenerate we can eas
differentiate Eq.~14! so that

Qik[ lim
e→0

(
j

Di j

]

]Dk j
Tr ln~R1e1!

5(
j

Di j Tr0S ]R

]Dk j
•R0

21D5~L0! ik , ~15!

where inside the trace Tr0 over the (N21)-dimensional sub-
space projected out byL0 the matrixR becomes invertible
with the inverse denoted asR0

21. This allows us to obtain the
combination that appears in the kinetic equations,

Qii 1Qkk2Qik2Qki52~12d i ,k!. ~16!

These preliminaries are sufficient to prove the desired
lation. Indeed, using Eq.~16! by direct and tedious differen
tiation of Eq.~10! one can show that the kinetic equations~7!
may be expressed through the instantaneous gradients@18# of
the variational free energy as

zb

2

d

dt
Dmm8~ t !52

2

3 (
m9

@Dmm9~ t !2Dm8m9~ t !#

3S ]A„D~ t !…

]Dmm9~ t !
2

]A„D~ t !…

]Dm8m9~ t !
D . ~17!

This formula, together with Eqs.~10,14!, is the key formal
result of the current work. The structure of Eq.~17! is suffi-
ciently nontrivial to be guessed from phenomenological
guments and has been derived in a systematic manner
ceeding from Eq.~7!.

We would like to comment here that although, for sim
plicity, we have presented the explicit formulas above fo
ring polymer, our current formalism is general and covaria
In fact, the kinetic equations~17! are valid for any topology
of the chain. Thus, it is straightforward to consider mo
complicated topologies such as a star, brush, netw
branched chain, and so on. For that it is sufficient to mod
only the spring and stiffness terms in Eq.~3!, and, respec-
tively, in Eq. ~10!. For example, to describe an open cha
one has simply to suppress the term withn50 in the con-
nectivity contribution, and the terms withn50,N21 in the
stiffness contribution to the energy. We undertake a deta
comparison of ring versus open homopolymers in kinetics
the collapse transition of the homopolymer in a separ
work @19#. Another interesting possibility is that the gener
equation~17! is also valid for models with different ways o
representing the connectivity and stiffness. For example,
freely rotating model@4# can be obtained by suppressing t
first two terms in Eq.~10! and instead keeping fixed th
following mean-squared distances:Dm,m115b0

2 and
Dm,m1254b0

2sin2u/2, whereb0 and u are the bond length
and angle. This is easy to prove by adding appropri
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‘‘soft’’ constraints to the free energy functional and takin
the consequent limit in Eq.~17!, so that they becomed func-
tions in the partition function.

Finally, let us introduce two main observables: the me
squared radius of gyration and the degree of microph
separation@12#,

Rg
25

1

2N2(
mm8

Dmm8,

C5
1

N2Rg
2DDs

(
mm8

~umm8
~2!

2ū~2!!Dmm8. ~18!

The second parameter has a meaning of the dimension
correlation of the matrices of the relative two-body intera
tion and the mean-squared distances. For heteropolym
with two types of monomers it characterizes the differen
between the mean-squared radii of gyration of hydroph
and hydrophobic species, and for the symmetric composi
with their numbers equal we have a simple relation:C
5@Rg

2(b)2Rg
2(a)#/(2Rg

2).

IV. NUMERICAL RESULTS

The self-consistent kinetic equations~17! have been stud
ied numerically using the explicit formulas~C1,C2,C4! for
the effective potentials~see Appendix C!, and the expression
given by the first term in the right-hand side of Eq.~7! for
the entropic contribution. We used the fifth order adapt
step Runge-Kutta method@20# to improve stability of the
solution which, for large amphiphilicity parameterD is char-
acterized by a rather rugged free energy landscape. We
that such a kinetic method for finding the equilibrium dist
butions is more reliable and efficient than the standard m
ods of free energy minimization if there are many mounta
and valleys on its surface. We also refrain from study of
influence of the hydrodynamics in this paper, for the analy
and results are complicated enough already. Besides, the
drodynamics in the preaveraged approximation does no
fect the equilibrium state, which is recovered by taking t
stationary limit in the kinetic equations.

We include the volume interactions up to the three-bo
terms only, i.e.,u$n%

(J)50 for J.3. As can be seen from Eqs
~17,C2! the computational time per time step scales with
chain length astc;N3 here. This performance is intermed
ate between that of the homopolymertc;N2 @14,17# and that
of the random copolymertc;N4 @12,13#. The performance
of the formalism in Ref.@11# was tc;K4M2, whereK and
M are the block length and number of blocks, respective
Besides, that formalism relied on the use of complex va
ables, and the unitary transformation to the real basis was
an easily automated task for complicated sequences. M
over, the treatment of the diffusive mode was nontrivial a
sequence dependent. Thus, in every respect, the cu
scheme is most attractive for the study of heteropolymer
quences from the computational point of view.

It is natural to work here with combinationsL
5(kBT/k)1/2 andT5zb /k as the units of size and time. W
choosek51, kBT51 and zb51 to fix L and T equal to
unity. In addition, we fix the following interaction param
-
se
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(3)

510kBTL6 and the
stiffnessk50 as we did in Ref.@11#.

Now, we turn to discussion of concrete results. We ha
studied ring chains of lengthsN530, 60, and 90. We shal
present here the most complete results forN560 and discuss
the N dependence only briefly. We have examined ma
different sequences. However, we present our data in
paper only for three particular choices that we found m
typical and illustrative of the heteropolymer behavior. The
are chains of: 30 (ab) blocks, 10 (aaabbb) blocks and 2
(abacbbcabccbcaaacbcccbbaacbcca) blocks, which
we call the ‘‘short’’ blocks, ‘‘long’’ blocks, and ‘‘random’’
sequences, respectively~see the end of Sec. II for the mono
mer notations!.

FIG. 1. The phase diagram of copolymer sequence 30 (ab)

~short blocks! in terms of the mean second virial coefficientū(2)

and the amphiphilicityD ~both in unitskBTL3). CurvesC and S
correspond, respectively, to the collapse and the microphase s
ration continuous transitions. CurvesI andII correspond to discon-
tinuous transitions to the frustrated phases. ‘‘Spinodal’’ curvesI 8
and II 9 bound the regions of metastability of the frustrated stat
Transition curves and boundaries distinguishing different frustra
sates are not depicted.

FIG. 2. The phase diagram of copolymer sequence
(aaabbb) ~long blocks! in terms of the mean second virial coeffi

cient ū(2) and the amphiphilicityD ~both in unitskBTL3). For large
values ofD the collapse transition becomes discontinuous~curveI !
and it is accompanied by microphase separation~see also Figs. 5
and 6!. CurvesI 8 and I 9 are spinodals.
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FIG. 3. The phase diagram of the random sequence
(abacbbcabccbcaaacbcccbbaacbcca)in terms of the mean

second virial coefficientū(2) and the amphiphilicityD ~both in units
kBTL3). Other notations are as in Fig. 1.
A. Equilibrium phase diagrams

The phase diagrams in terms of the mean second v

coefficient ū2 and the amphiphilicityD for the above men-
tioned three sequences are presented in Figs. 1–3. For

tive values ofū(2) and comparatively small values ofD the
conformational state of the chain is akin to a homopolym

extended coil@see Fig. 4~a!#. By decreasingū(2) to the nega-
tive region the chain is caused to undergo a continu
~second-order-like! collapse transition~curve C!, that is
characterized by a rapid fall of the radius of gyration@21#
~see Fig. 1 of Ref.@14#! and the change of the fractal dimen
sion. Proceeding from the collapsed globule at a fixed ne
tive ū(2) the increase of the amphiphilicityD also causes a
continuous transition~curve S! to the microphase separate
~MPS! globule @22#. During this transition the system size
Rg , monotonically increases~see Fig. 5! and the mean en
ergy E decreases in agreement with our earlier results

2

e smallest
FIG. 4. The mean-squared distances matrixDmm8 for the short blocks copolymer 30 (ab) at D520. (a–d) correspond, respectively, to
u(2)515, 221, 230, and240 ~in units kBTL3). Indicesm,m8 start counting from the upper-left corner. Each matrix elementDmm8 is
denoted by a quadratic cell with varying degrees of black color, the darkest and the lightest cells corresponding, respectively, to th
and to the largest mean-squared distances. The diagonal elements are not painted sinceDmm50. For the coil~a! Dmm8 elements increase
monotonically on moving away from the diagonal towards the half-ring distance along the chain. In frustrated states~b,c! Dmm8 possesses
some number of clusters with monomers having smaller distances between each other. For the MPS globule~d! Dmm8 reflects the structure
of the two-body interaction matrixumm8

(2) and consists of similar elementary cells.



he
o
a
a

e
g
le

th
c

.
ct

h

s
ad

e
ergy
ly
to

l

s,
the
ean
lly
in-

PS

m

e

ergy

6806 57E. G. TIMOSHENKO, YU. A. KUZNETSOV, AND K. A. DAWSON
Refs.@23,11#. The former change is more pronounced for t
long blocks compared to other sequences, for which the c
nectivity constraints impede formation of structures with
hydrophilic shell and hydrophobic core. The MPS order p
rameterC ~see Fig. 6! increases almost linearly for smallD,
then after the transition asymptotically saturates.

The transition from the coil at large values ofD to the
MPS globule turns out to be more complicated, and ess
tially dependent on the sequence. In case of the ‘‘lon
blocks ~Fig. 2! the collapse transition to the MPS globu
becomes discontinuous~first-order-like!. Thus, inside the
boundaries of metastability, designated by spinodals I8 and
I9, there are two competing minima of the free energy:
coil and the MPS globule. The former minimum is chara
terized by a large sizeRg ~on the rights of Fig. 7! and a small
MPS order parameterC ~Fig. 8!, while for the latter mini-
mum the situation is reversed~see the left-hand side of Figs
2,8!. The depths of the free energy minima become exa
equal on the transition curveI in Fig. 2.

For the short blocks~Fig. 1!, as well as for many random
sequences~such as in Fig. 3!, the phase diagram is muc

FIG. 5. Plot of the mean-squared radius of gyrationRg
2 ~in units

L2! vs the amphiphilicityD ~in unitskBTL3! for different sequences
~from top to bottom!: long blocks, short blocks, and the rando
sequence. Here we have fixedū(2)5240.

FIG. 6. Plot of the parameter of microphase separationC vs the
amphiphilicity D ~in units kBTL3) for different sequences: long
blocks~pluses!, short blocks~diamonds!, and the random sequenc

~quadrangles!. Here we have fixedū(2)5240.
n-

-

n-
’’

e
-

ly

more complicated. Starting from some value ofD and for
intermediate values ofū(2) there appear additional solution
corresponding to local minima of the free energy. The bro
region where this could take place is bounded by curvesI 8
and II 9 in Figs. 1, 3. With increasingD the number of such
solutions grows quickly. Significantly, in a region of th
phase diagram some of these become the main free en
minimum. As the number of such solutions grows rough
exponentially with the chain length, we do not attempt
draw all their boundaries of~meta!stability. Instead, we shal
designate them collectively asfrustratedphases, explaining
this terminology below.

An important point here is that, as our analysis show
these solutions become dominant in a narrow region of
phase diagram due to a subtle competition between the m
energy and the entropy. The MPS globule is entropica
unfavorable there because the overall shrinking force is
sufficiently strong. The values ofRg

2 andC are intermediate
for these solutions and lie between those of the coil and M
globule ~see Figs. 9, 10!. In this sense, we can call them

FIG. 7. Plot of the mean-squared radius of gyrationRg
2 ~in units

L2) vs the second virial coefficientū(2) ~in units kBTL3) for 10
(aaabbb) copolymer. Here and in Figs. 6, 9, and 10D530, solid
lines correspond to values of observables in the main free en
minimum and dashed lines—in the metastable minima.

FIG. 8. Plot of the parameter of microphase separationC vs the

second virial coefficientū(2) ~in units kBTL3) for 10 (aaabbb)
copolymer.
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57 6807CONFORMATIONAL TRANSITIONS OF . . .
nonfully compacted and misfolded states. In comparison,
MPS globule@see Fig. 4~d!# has a more compact size an
better optimized volume interactions, which is manifested
a higher value ofC.

Most interesting is the local structure of these additio
phases. Let us discuss the particular example of the 30 (ab)
sequence. The formalism of Ref.@11# has used heavily the
assumption of certain symmetries for the mean-squared
tancesDmm8 due to which these variables can take only 3M
independent values, whereM is the number of blocks. Thes
symmetries are the block translation invariance,

Dm1Ki ,m81Ki5Dm,m8, for anym, m8, and i , ~19!

whereK is the block length, and the more complicated
version symmetry discussed in detail in Ref.@11#. These
symmetries have a simple meaning—a renumbering
monomers does change the average properties over the
tistical ensemble—the interactions of a ring chain remain
same. However, the maximal possible number of dynam
variables in the GSC method is much larger and is equa
N(N21)/2. Surprisingly, it turns out that the frustrate
phases are characterized by spontaneous breaking of

FIG. 9. Plot of the mean-squared radius of gyrationRg
2 ~in units

L2) vs the second virial coefficientū(2) ~in units kBTL3) for the
random sequence.

FIG. 10. Plot of the parameter of microphase separationC vs

the second virial coefficientū(2) ~in units kBTL3) for the random
sequence.
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symmetries, and therefore only the current version of
method that takes into account all degrees of freedom
describe them. Thus, the property~19! is no longer valid.
This phenomenon describes formation of local frustrated h
erogeneities@see Figs. 4~b,c!# in which pieces of the chain
form MPS clusters@23# that are prevented from further coa
lescing by their hydrophilic shells and high entropic barrie

The role of spontaneous symmetry breaking is well r
ognized in equilibrium statistical mechanics. What is striki
here is that the number of distinct spontaneously bro
states becomes huge for large system sizes. This dive
and a special foliating structure of various branches lead
the thermodynamic limit to what is known as a spin-gla
like frozen phase@24# of random copolymers~see, e.g., Refs
@12,13# and numerous references therein!. We shall return to
the issue of spontaneous symmetry breaking in kinetics
Sec. IV B.

Even though the kinematic symmetries are not pres
from the outset for arbitrary, or random, sequences, the st
ture of the phase diagram~Fig. 3! and behavior of main
observables~Figs. 9,10! remain very similar. It is the particu
lar structure, number, and shape of boundaries of frustra
phases that are very sensitive to the sequence. The symm
that may be broken in this case has a subtler, dynamic m
ing and may be expressed in terms of the replica formal
@24#. In a sense, for a very long periodic chain, blocks m
be viewed as identical copies of a smaller block-leng
chain. Thus, it is by no means surprising that the repl
symmetry breaking in our case for periodic systems ta
such an explicit manifestation in the breaking of the blo
translational symmetry. This important point was complet
missed, nor could it be discovered, in our considerations
Ref. @11#. Therefore we have achieved here a new signific
insight into the problem by a simple extension of the GS
method.

An interesting feature of our phase diagrams is that
region between spinodalsI 8 and II 9, designating where the
frustrated phases can exist, expands dramatically with
creasing chain length. For example, atD525, for the 15
(ab) sequence it lies approximately between219,ū(2)

,10, while for the 30 (ab)—between239,ū(2),11, and
the curveII 9 goes nearly vertically downwards for largerN.
According to the above interpretation, for infinitely lon
chain somewhere in this broad region and close to its bou
aries there are the actual glass transition curves, wh
should be determined using proper glass order parame
Thus, for short chains the curvesI 8 and II 9 may be viewed
as approximate indicators of the freezing transitions. T
former distinguishes between the homopolymerlike and
random coil, while the latter—between the homopolymerli
~liquid! and the frozen globules. As for the region of stab
MPS globule, it gets relatively smaller for larger system
That is not surprising—the frustrated phases expand and
phase separation involving larger spatial scales requ
stronger interactions. Having understood the identificatio
for the spinodals, we now can recognize in Figs. 1 and 3
main features of the phase diagram, though rather distor
of the random copolymer model presented in Ref.@13#.

Finally, let us comment on the phase diagram of t
‘‘long’’ blocks ~Fig. 2!. The microphase separation is obv
ously easier in this case and it dominates for large value
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D, so that the frustrated phases are suppressed. We f
that, qualitatively, in order to form a frustrated phase, in
finite range ofD values, the number of~not necessarily iden
tical! pieces of the chain with competing interactions sho
be larger than some critical number, in principle, wea
dependent onN. Here are a few examples conforming to th
qualitative criterion: the phase diagram of 10 (ab) behaves
roughly like that of 10 (aaabbb), but for 15 (ab) it behaves
similarly to 30 (ab); while for 15 (aabb) the phase diagram
looks like that of 15 (aaabbb) at small and moderate value
of D. It becomes like that of 30 (ab) for much larger values
of the amphiphilicity. It is reasonable to conjecture, the
fore, that for a large number of (aaabbb) blocks, as well as
for extremely high values ofD and just 10 blocks, the frus
trated phases may be found again.

B. Folding kinetics

Here we shall consider the time evolution of the conf
mational state of the system away from its initial equilibriu
after it has been subjected to an instantaneous temper
jump that causes the two-body interaction parametersū(2)

and D to change. We are interested in quenches from
homopolymer coil, where all monomers are equally hyd
philic (ū(2).0 andD50), to the region of parameters co
responding to the MPS globular state, so that thea species
became strongly hydrophobic and theb species remained
weakly hydrophilic (ū(2)!0 andD*uū(2)u).

The temporal behavior of the mean-squared radius of
rationRg

2(t), the MPS parameterC(t), and the instantaneou
free energyA(t) in kinetics of folding for different se-
quences is presented in Figs. 11–13. For the homopoly
~curvesA! Rg

2 andA decrease monotonically to their fina
equilibrium values, while the MPS parameterC remains
identically zero, for there is no distinction between differe
monomer species. These curves agree with the earlier re
of Ref. @14# and serve for reference purposes here.

Now let us discuss the curvesB corresponding to the
periodic (ab) sequence. In the previous subsection we h
mentioned that the current formalism yields results con

FIG. 11. Time evolution (t is in unitsT) of the mean squared
radius of gyrationRg

2 ~in unitsL2) for different sequences after a

instantaneous quench from the coil state,ū(2)515 andD50, to the

region with ū(2)5225 andD530.
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tent with those of Ref.@11# only beyond the parameter regio
of the frustrated phases, which are characterized by spo
neous breaking of the block symmetry. In kinetics the situ
tion is somewhat similar, but the consistency with the pre
ous simplified formalism is even more limited. In reality, th
mean squared radius of gyration remains close to that of
‘‘effective’’ homopolymer ~curveA! during the first kinetic
stage@see Eq.~74! in Ref. @11##. Interestingly, this is not
quite so for more complicated sequences. The MPS par
eter C(t) for the (ab) copolymer grows slowly in a way
similar to the splitting of the Fourier modesFq

11(t)2Fq
00(t)

for large indicesq @see Fig. 4 in Ref.@11##. However, con-
trary to the strange conclusion in Ref.@11# that the kinetics
of the (ab) copolymer proceeds faster than for the h
mopolymer, we now have a~natural from the point of view
of Monte Carlo simulations@23#!, slowing down of copoly-
mer kinetics. Analysis ofDmm8(t) shows that this effect is
entirely due to the spontaneous breaking of the block sy
metry in kinetics, something that has not been accounted
in Ref. @11#. Indeed, in Fig. 14 we exhibit the time depe
dence of the mean squared distances between two ne
hydrophobic monomersD2k,2k12(t) for the (ab) copolymer
in kinetics after a quench to the MPS globule region. F

FIG. 12. Time evolution (t is in unitsT ) of the parameter of
microphase separationC for different sequences after the sam
quench as in Fig. 11.

FIG. 13. Time evolution (t is in unitsT ) of the instantaneous
free energyA ~in unitskBT ) for different sequences after the sam
quench as in Fig. 11.



t
e
e

-

th
u

er
m
b
ym
in
t-
ch
th

a
ny
tr
ai
o
th
b

im
ua
tic
er
o

pe
-
i-

r

of
o
g
a

o-

0

etic
ase-

they

57 6809CONFORMATIONAL TRANSITIONS OF . . .
early as well as for late times these functions for differenk
are exactly equal to each other. However, there is a w
defined intermediate period in time where the block symm
try is spectacularly broken~see Fig. 15!. We remark that the
symmetry breaks and restores in a steplike manner~e.g.,D0,2
andD4,6 join together att.10, earlier than with other func
tions! and also that this effect is relatively strong.

We would like to make a general comment here on
nature of spontaneous symmetry breaking in kinetics. Th
normally in such situations at equilibrium there exist a th
modynamically unstable symmetric free energy minimu
and a disjoint set of symmetry broken minima, which may
transformed to each other by the residual subgroup of s
metry transformations. These states may also be obta
kinetically as infinite time limits of the time evolution star
ing from any; for example, the symmetric initial state, whi
happens to be the main free energy minimum before
quench.

However, the formal structure of the GSC kinetic equ
tions ~17! is such that they yield a symmetric solution at a
moment in time provided one proceeds from the symme
initial condition. A question arises then—how can one obt
the kinetics that could lead eventually to the multitude
final states with broken symmetry? The answer is clear in
exact theory—there are fluctuations that can transform
tween different spontaneously broken states in kinetics.

The GSC method presents, though an optimized and
proved but still a mean-field-type theory, where such fluct
tions are not properly included. Manifestation of the kine
spontaneous symmetry breaking takes a different form th
Namely, at some moment in time the symmetric solution
the kinetic equations becomes unstable with respect to
turbations~whether of the initial condition, or of the interac
tion matrix,unn8

(2) ). Thus, for example, one can add an infin
tesimal symmetry breaking term«nn8 to the two-body
interaction matrix and consider the limit of vanishing pertu
bation in the solution. Different choices of the form of«nn8
in the unperturbed limit would yield all possible types
spontaneously broken kinetic evolution, which are,
course, equivalent to each other. Numerically, such a re
larization procedure is not even necessary. There is alw

FIG. 14. Time evolution (t is in unitsT ) of the mean squared
distances between nearesta monomersD2k,2k12(t) ~in unitsL2) for
30 (ab) copolymer in kinetics after the quench with the final tw

body parameters:ū(2)5250 andD530.
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FIG. 15. Dmm8(t) matrix for the short blocks copolymer 3
(ab) in kinetics after the same quench as in Fig. 14.~a–c! corre-
spond, respectively, to the following moments in time:t54.6, 11,
and 12.9. See also caption to Fig. 4 for more details. The kin
process proceeds through formation of locally collapsed and ph
separated clusters. The initial conformation is similar to Fig. 4~a!,
then some clusters appear, coalesce into larger ones, until
eventually unify forming the MPS globule@similar to Fig. 4~d!#.
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an intrinsic perturbation due to computer round off and n
merical integration errors. Thus, if the symmetry is favora
to be kinetically broken somewhere, numerically one obta
one of the spontaneously broken solutions there, rather
the unstable symmetric solution, unless the symmetry co
tions have been imposed by hand. In this situation impro
ment of the numerical precision would have no profou
effect—the kinetic process either does not change, or
change only up to an experimentally unobservable resid
symmetry transformation.

We note also that such a procedure of perturbing the
teraction matrix here is analogous to introducing an exte
magnetic field in the Ising model. The spontaneous mag
tization of a macroscopic sample of ferromagnet may
achieved by gradually switching off the external magne
field. In the absence of the field there would remain doma
with long-range order, but varying directions of the spon
neous magnetization canceling each other. Unfortunately
our case it is not evident how to experimentally impleme
an analogous gradual switching off of«nn8.

Now returning to our results, in Fig. 11 one can see t
the folding kinetics for the (ab) copolymer is about three
times slower than for the homopolymer of the same leng
the effect being even stronger for other sequences we h
considered. From Fig. 12 and the phase diagrams in F
1–3, it is evident that the considered quench results in
final state of the MPS globule for the ‘‘long’’ blocks~curve
C!, whereas it results in the frustrated phases for two ot
sequences~curvesB andD!. For the latter phases the MP
parameter is smaller and the radius is larger than for the M
globule, as we already know from the equilibrium consid
ations. It is interesting to note that the final relaxation to
frustrated phases may be rather unusual. For example
Figs. 11,12 for the ‘‘random’’ sequenceRg

2(t) increases and
C(t) decreases during the last kinetic stage, which is
converse of the behavior at final relaxations in other ca
Another unusual observation is that for some sequences
parameterC may even become negative during some time
kinetics, something we never observed at equilibrium. T
shows that the structure of nonequilibrium conformatio
can be very complicated.

The instantaneous free energyA(t) depicted in Fig. 13
turns out to be the quantity most sensitive to the conform
tional structure of the nonequilibrium state. From that figu
it strikes us that, while the homopolymer folding is a sing
smooth relaxational process, the folding of heteropolym
proceeds through a multistep acceleration-deceleration
cess. The flat regions of a staircaselike function corresp
to temporary kinetic arrest of the system in transient n
equilibrium ~mostly symmetry broken! conformations. Gen-
erally speaking, in the GSC method we deal with the ti
evolution of a statistical ensemble of various initial confo
mations. The flat regions appear due to transient trapping
various members of the ensemble in their local shallow
ergy minima. Since such minima are encountered at diffe
moments in time for different members of the ensemb
their influence on the overall time evolution of averaged o
servables is manifested in a smooth characteristic slow
down.

Qualitatively then, summarizing the data for various s
quences, most of which we have suppressed here, we ca
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that the number of local minima affects the number of st
steps, whereas the depth of minima determines the length
the steps. This interpretation is highly supported by
strong dependence of the staircase structure on the c
length, the sequence, and the interaction parameters, for
known how the frequency and depths of local potential
ergy minima depend on these factors. On the one hand,
known that for a long heteropolymer chain the number
local minima grows exponentially with the chain lengthN,
and indeed we see that the number of steps inA(t) grows
just as quickly. On the other hand, increasing the amphip
licity D leads to higher depths of local minima as well as
increase in their number, and indeed the steps inA(t) be-
come longer and more numerous. Let us give another
ample of such a connection. For the ‘‘long’’ blocks the i
teractions are less frustrated than, say, for the (ab) blocks,
thus there are far fewer local energy minima, but the bar
between the coil and MPS globule is higher. As a result,
kinetic process~curve C in Fig. 13! proceeds through only
one rather long kinetically arrested step.

It is worthwhile to make a comment here on the notion
kinetic stages introduced in earlier works@25,14,23#. Those
we associated with typical structures of the conformation a
accompanying kinetic laws. We distinguished at least
following kinetic stages at the collapse of the homopolym
early time necklace formation, middle time coarsening, an
number of final relaxational processes. The multistep cha
ter of folding observed in this work affects the middle kine
stage, resulting in its considerable complication and splitt
into multiple substages with respective complex kinetic la
that are determined by the sequence. Universality of s
kinetic laws is doubtful, but probably it can be recovered
averaging over certain classes of sequences with similar f
ing properties.

Apparently, in the GSC method the kinetics is a motion
the space of N(N21)/2 averaged dynamic variable
Dnn8(t), and it is determined by the profile of the free e
ergy. It may be instructive, using Figs. 11 and 13, to pres
the kinetics via a parametric plot ofA vs Rg , the latter being
the main, though not the only, relevant ‘‘coordinate’’ of th
system. That would produce a kind of ‘‘bottleneck’’ pictur
that was much discussed by P. Wolynes and others@26# in
relation to the protein folding problem. This indicates th
our method produces behavior that permits interpretation
terms of phenomenological energy landscape models.

Finally, let us utilize once again the connection betwe
the kinetic evolution of the free energy and the ruggednes
the potential energy landscape. This would allow us to s
some light on the general structure of the energy landsc
for complex heteropolymers. Thus, a typical example of
‘‘random’’ sequence kinetics~curveD in Fig. 13! shows first
a fast drop, then the appearance of short steps that are g
ing longer with time, until the last step becomes infinite. Th
translates to the following equivalent energy landscape v
sus some collective coordinate: first there is a rapid d
away from the unstable coil state, then the surface flatt
and small wrinkles appear on it; they grow larger in amp
tude gradually becoming high mountains and deep valle
until there is eventually a very deep ravine corresponding
the ‘‘ground’’ state of the system separated by a very h
barrier from other minima. In our view, the latter pictu
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bears a remarkable resemblance to a typical mean-field
ergy landscape in spin glass systems@24# recently discussed
by Parisi@27#. This observation seems encouraging to us a
indicates that the GSC method is capable of describing v
complex systems, although it is too detailed and expensiv
its complete form for description on a macroscopic sca
Nevertheless, by taking the quenched disorder avera
~similarly to Ref.@12#! it is possible to achieve an adequa
description for heteropolymers that is alternative to the r
lica formalism. We believe that the underlying connecti
between both types of approaches has been clarified to s
extent by the current work.

V. CONCLUSION

In the present work we have extended the Gaussian
consistent method to permit the study of heteropolym
with complicated primary sequences. This has been achie
by transforming the kinetic GSC equations, earlier deriv
for the Fourier modes, to the form containing only the me
squared distances between pairs of monomers and rel
these equations to the instantaneous gradients of the v
tional free energy calculated based on the Gibbs-Bogoliu
principle. The revised GSC formalism possesses impor
computational advantages; moreover it is fundamentally
perior to its predecessor in that it can describe phenomen
spontaneous symmetry breaking and formation of struct
heterogeneities.

We then have applied the extended GSC method to s
particular amphiphilic heteropolymers. The equilibriu
phase diagrams for these have been obtained in a syste
manner. Apart from the coil and two globular states we ha
discovered that in a wide intermediate region of the ph
diagram there may be a large number of frustrated parti
misfolded states. Despite the fact that such states, the nu
of which grows exponentially with the chain length, a
mostly metastable, some of them become the dominant s
in their rather narrow domains. The corresponding poten
energy profile of the system has a strong resemblance to
of a typical spin glass system. Thus, we may conclude
the transition to these states in the thermodynamic limit c
responds to a glassy freezing transition.

We note that an observation that for sufficiently long s
quences of alternating monomers~‘‘short’’ blocks! the mi-
crophase separated state is displaced by the region of g
frustrated phases has been known for quite some time
well understood in the framework of the density theories@9#
as a result of the density fluctuations that modify the me
field behavior. The block translational symmetry breaking
our approach is another manifestation of the glassy phen
ena earlier extensively studied for melts of random h
eropolymers. In addition, we can see how the destruction
the microphase structures occurs for finite-sized systems
how exactly it depends on a particular sequence.

The folding kinetics is found to be strongly affected b
the presence of these transient frustrated states along th
netic pathway. This leads to a complicated kinetic proc
consisting of multiple steps with pronounced slowing do
and then acceleration in the folding rate. It is interesting
note that a typical fairly heterogeneous chain with wea
hydrophilic and strongly hydrophobic units folds kinetical
n-
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first to one of the misfolded states and can undergo a co
quent nucleation process to the main thermodynamic stat
the microphase separated globule.

These results for equilibrium and kinetics confirm ma
predictions of the earlier treatment adopted for random h
eropolymers in Ref.@12# based on a quasiperturbative ave
aging of the GSC equations over the quenched disorder.
latter approach describes a large set of random heterop
mer sequences with a Gaussian distribution of the mono
amphiphilicity. The kinetics of folding seems to be cons
tent between the previous and current approaches with
spect to main observables such as the radius of gyrat
energy, and MPS parameter. A smooth, slow glasslike re
ation in the former approach is produced by averaging o
all different sequences with their particular multistep pr
cesses of passage through the frustrated states. Although
we observe strong dependence of the phase boundaries i
equilibrium phase diagram on the primary sequence, the
jor conclusion of Refs.@12,13# that there are three distinc
globular states of the homopolymerlike~liquid!, frozen
~glassy!, and microphase separated~folded! globules, and an
additional state of the random coil, as well their relative
cation in the diagram, remain valid. We have previously d
cussed that the equilibrium limit of the theory in the trea
ment of Ref. @13# had certain deficiencies due to th
additional perturbative approximation, which we attempt
to remedy phenomenologically. The current fundamen
scheme is free of any such problems and provides a reli
test ground for development of further approximations.

We have also discovered that heteropolymer sequence
equal length can be roughly divided into distinct classes p
sessing similar phase diagrams and kinetic folding prop
ties. For instance, periodic polymers with a few long bloc
easily undergo microphase separation and for them the f
trated states are suppressed at equilibrium and in kine
There is a view in the scientific community that compl
random sequences also permit more refined classifica
The identification of good folding sequences~see, e.g., Ref.
@28#! is believed to be an important prerequisite for unrav
ing the mysteries of proteins.

In the current paper the GSC method has been applie
a single chain problem. However, since the kinetic equati
~17! are covariant it would be relatively straightforward
apply it to solutions of many polymers. Formation of no
trivial mesoscopic globules in copolymer solutions at lo
concentrations has been predicted in the framework of
method @29# and recently observed experimentally@30#.
Generally, the GSC method may be viewed as extensio
the realm of kinetics of the variational treatment, which is
better theory than standard mean-field approaches due
much larger number of variational parameters. We sho
admit, however, that in the complete form numerical solut
of the GSC equations is computationally expensive for s
tems of a few hundred of monomers. Nevertheless, as
have recently shown@29#, in some approximation the GSC
equations can be reduced to those of a simple mean-
theory such as the Flory-Huggins one, and some extra
rections to the latter. Importantly, the formalism in terms
the mean-squared distances is valid for description of
extended coil as well as of the globular states, whereas
density formalism theories are limited to relatively high de
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sities of the system. The weakest point of the method is
Gaussian form of the trial Hamiltonian, and thus of the c
relation functions, a matter that has been discussed at s
length in the past@25,14#. However, based on the covaria
form of the kinetic equations derived here, we hope, in so
not too distant future, to take into account the non-Gauss
corrections in an analogy to the treatment of the hard-c
repulsion for van der Waals systems.

The main strength of the revised GSC approach lies in
ability to describe a given heteropolymer sequence of fin
length, rather than aninfinite ensembleof sequences charac
terized in a certain probabilistic way. This is an inevitab
preliminary step in developing adequate techniques for
oretical modelling of complex biopolymers. Understandi
of the relation between the chemical composition~primary
sequence! and the 3D equilibrium~tetriary! structure, as well
as of the kinetics of folding, in proteins is one of the gre
challenges of the modern biotechnological science. We h
that methods like the one we have presented here will t
their right place in the collection of new tools for bioinfo
matics.
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APPENDIX A: INCLUSION OF HYDRODYNAMICS

The Langevin equation with account of the hydrodynam
interaction includes the Oseen tensor@4#,

d

dt
Xn

a5 (
a8,n8

Hnn8
aa8

„X~ t !…fn8
a8, ~A1!

wherefn
a is the right-hand side of Eq.~1! and the noise has

the second momentum proportional to the inverse Oseen
sor.

In the preaveraged approximation we have

^Hmm8
aa8 &5daa8jmm8, jmm85

dmm8
zb

1
12dmm8

3~2p3!1/2hsDmm8
1/2 ,

~A2!

and the analogs of formulas~A5,A6! of Ref. @11# will be

1

2

d

dt
Dnn85(

m8
~jnm82jn8m8!~Gnm82Gn8m8!, ~A3!

Gnn852
2

3(m9
Dnm9

]A
]Dn8m9

5kBTdnn81(
m9

Dnm9Vn8m9.

~A4!

Explicit expressions for a few first terms in the virial expa
sion of the effective potentials,

Vmm852
2

3

]E
]Dmm8

, ~A5!

may be found in Appendix C.
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APPENDIX B: THE VARIATIONAL PRINCIPLE

We introduce the trace as the integration over all mo
mers coordinates subject to the constraint that the refere
point is fixed in the center of mass of the chain,

Tr[E )
n50

N21

dXndS (
n

XnD . ~B1!

Then the partition function is obtained asZtot5Tr exp
(2H/kBT) with H given by Eq.~3!. The d function in Eq.
~B1! removes the trivial divergence inZtot due to the trans-
lational invariance.

We choose the trial Hamiltonian as an arbitrary line
combination,

H0

kBT
5

1

2(
mm8

Kmm8XmXm81(
m

JmXm , ~B2!

where we have also introduced arbitrary sourcesJm . Using
the d function one can exclude, say,X0 and derive

Z0@J#5~2p!3~N21!/2~detK̃ ~N21!!23/2

3expS 1

2(
mm8

8~Jm2J0!~K̃21!mm8~Jm82J0!D ,

~B3!

where theN21 dimensional matrixK̃ is

~K̃ !nn85Knn81K002Kn02K0n8. ~B4!

We can calculate the averages by

Fnn85
1

3
^XnXn8&05

1

3

]2ln Z0@J#

]Jn]Jn8

5~K̃21!nn8, ~B5!

where again the latter identity holds only forn,n8Þ0. From
these quantities it is straightforward to obtain the me
squared distances using Eq.~6!, which also holds only for
n,n8Þ0.

Finally, we want to express all independent parameter
the matrixK̃ via the quantitiesDmm8. For this we compute
the following sums applying the aboved-function constraint,

(
mm8

Dmm852N(
m
Fmm,

(
m

Dmn5
1

2N(
mm8

Dmm81NFnn . ~B6!

SubstitutingFnn from the second formula here to Eq.~12!
and recalling the relation~8! we derive the desired invers
relation ~12! for (K̃21)nn85Fnn8.

From the partition function~B3! we obtain the ‘‘en-
tropic’’ term A0[2TS52kBT ln Z0@0# that yields pre-
cisely Eq.~11!. The Gibbs–Bogoliubov variational principl
is then based on minimizing this variational free energyA
5A01^H2H0&0 with respect to theN(N21)/2 indepen-
dent variational parametersDmm8.
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1. Entropy of the homopolymer

For the homopolymer we have the translational invaria
along the chain so thatDnn85Dk , wherek5un2n8u. Then
the matrix~12! may be rewritten as

Rnn85Rg
22

1

2
Dnn8, Rg

25
1

2N(
k

Dk . ~B7!

Let us apply a unitary transformation to the Fourier coor
nates generated by the matrix,

f n
q5

1

N1/2
expS 2

2p iqn

N D . ~B8!

By a direct evaluation and recalling the relation for the n
mal modes,

2
1

2N1/2(k
Ref k

qDk5Fq , ~B9!

we see that the matrixR̃5 f †
•R• f is diagonal with the ei-

genvaluesR̃0050 and R̃qq5NFq . Thus, the logarithm of
determinant of the (N21)-dimensional submatrix det8R̃
yields the standard ‘‘entropy’’ of the homopolymer@see Eq.
~3! in Ref. @17## up to a trivial constant.

APPENDIX C: FORMULAS FOR THE EFFECTIVE
POTENTIALS

Two first terms in the virial expansion of the derivativ
~A5! of the mean energy are explicitly given by

Vmm8
~2!

5~12dmm8!
ûmm8

~2!

Dmm8
5/2 2dmm8 (

n
nÞm

ûmn
~2!

Dmn
5/2

, ~C1!
.

s

e

-

-

Vmm8
~3!

5~12dmm8!3û~3! (
n

nÞm,m8

Dmn,m8n

~detD~2!!mm8n
5/2

2dmm8

3

2
û~3! (

nn8
nÞn8Þm

Dnn8

~detD~2!!mnn8
5/2 , ~C2!

where (detD (2))mm8m95Dmm8Dm9m82Dmm8,m9m8
2 .

It is usually assumed that for negativeū(2) the stability of
the system is ensured by the positiveness ofu(3). It turns out,
however, that for the whole range ofumm8

(2) this does not hold
and there are additional pathological solutions with singu
free energy. The reason for this deficiency of the model~3! is
that we have discarded the terms with two coinciding indic
in the three-body contribution. This standard trick is not s
isfactory therefore, but fortunately it could be remedied
using another prescription for these terms:

E35u~3! (
mÞm8Þm9

^d~Xm2Xm8!d~Xm92Xm8!&

13u~3! (
mÞm8

^d~Xm2Xm8!&
2. ~C3!

In Ref. @31# we show that the addition of the latter term
which is subdominant in the largeN limit anyway, does not
change the earlier results for the homopolymer, and e
quantitatively improves the agreement with known resu
for the dense globular state@5#. Importantly, for heteropoly-
mers this term removes spurious solutions and makes
theory well defined. The corresponding contributions to
mean energy and the effective potentials are

E~38!53û~3! (
mÞm8

Dmm8
23 ,V~38!

5~12dmm8!6û~3!Dmm8
24

2dmm86û~3! (
n

nÞm

Dmn
24 . ~C4!
.
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