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Conformational transitions of heteropolymers in dilute solutions
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In this paper we extend the Gaussian self-consistent method to permit study of the equilibrium and kinetics
of conformational transitions for heteropolymers with any given primary sequence. The kinetic equations
earlier derived by us are transformed to a form containing only the mean-squared distances between pairs of
monomers. These equations are further expressed in terms of instantaneous gradients of the variational free
energy. The method allowed us to study exhaustively the stability and conformational structure of some
periodic and random aperiodic sequences. A typical phase diagram of a fairly long amphiphilic heteropolymer
chain is found to contain phases of the extended coil, the homogeneous globule, the microphase separated
globule, and a large number of frustrated states, which result in conformational phases of the random coil and
the frozen globule. We have also found that for a certain class of sequences the frustrated phases are sup-
pressed. The kinetics of folding from the extended coil to the globule proceeds through nonequilibrium states
possessing locally compacted, but partially misfolded and frustrated, structure. This results in a rather compli-
cated multistep kinetic process typical of glassy systd®$063-651X98)16005-]

PACS numbdis): 36.20.Ey, 87.15.By

[. INTRODUCTION certain other important issues have not been addressed in that
work.

The study of the conformational transitions of heteropoly- In Refs.[12,13 we have achieved further progress and
mers in dilute solutions is important for many applications'€solved most of these questions, albeit at the cost of loosing
from the chemical industry to biotechnology. Directed moredetailed information about individual sequences. Namely, we
towards the former, there has been a significant amount d12ve pr)]er&‘o:jmed dave_raglrl:g of the GSC eqhqaﬂgl).ns over tEe
theoretical work carried out on concentrated copolymer soduenched disorder in the monomer amphiphilic strength.
lutions, mixtures, and blend&—9] using various types of the 1S Yielded a closed set of kinetic equations for description
density formalism. However, these approaches are not vali f random copolymers with a Gaussian distribution of the

at infinitely low dilution where the fundamental interactions isorder. Such an idealized system is very interesting in it
ely ¢ e self, particularly since there is hope that its study could shed
of the individual macromolecule determine its conforma-

! oL . . “"light on some features of the extremely complex problem of
tional state. This situation is more relevant for biochemistry.

; o rTE)rotein folding[10].
The problem is even harder to address at nonequilibrium T4 render the quenched disorder problem more tractable

conditions typical for biopolymers vivo [10]. ~ certain perturbative approximation was neces§a#. It be-

For these reasons we have been working for some time 0fame clear in Refi13] that this causes some deficiencies in
developing an adequate statistical mechanical technique fahe equilibrium limit of the formalism, and we have alluded
studying the equilibrium structure and kinetics across phasg how these could be alleviated in higher orders of the ex-
transitions in heteropolymef41-13. The main idea was to pansion.
extend the Gaussian self-consist6B6C method, originally Therefore, it seems important to revisit the general for-
proposed for the homopolymésee, e.g.[14] and references malism of Ref[11] in order to resolve remaining difficulties,
therein, to the case of inhomogeneous monomer interacmaintaining the rich information about particular sequences
tions. This has been achieved in REf1] where we have and avoiding any further approximations. Furthermore, there
derived the complete set of nonlinear kinetic equations foexists, till now, no simple theoretical procedure capable of
complex valued equal-time correlation functions of the Fou-giving the equilibrium conformational states of a heteropoly-
rier transforms of the monomer coordinates. There we hav8'er with arbitrary sequence, that can in a consistent manner
analyzed in some detail the simplest periodib) copoly- also give the full kinetic pat_hway be_tween these states. The
mer, but study of more complicated sequences remained offo'k presented here achieves this. To demonstrate the
of our practical computational reach. The relation of the ki-Stréngth of the extended GSC method we consider a number
netic equations to the equilibrium free energy, as well as th@ interesting examples of heteropolymer sequences. Differ-
expression for the entropy, were also unknown to us at thagnt kinds of interactions, such the hydrodynamic interaction,

stage. Thus, the phase diagrams have not been elucidated dRgy be straightforwardl_y incc_)rporated into the scheme. A
rich and nontrivial physical picture emerges as a result of

this theoretical progress.

* Author to whom correspondence should be addressed. Web site:
http:/ffiachra.ucd.ieftimosh

"Established at the University College Dublin and Queen’s Uni-  Traditionally, we proceed from the coarse-grained de-
versity of Belfast. scription of the polymer chaif2—4] with the spatial coordi-

II. THE BEAD-AND-SPRING MODEL

1063-651X/98/5(%)/6801(14)/$15.00 57 6801 © 1998 The American Physical Society



6802 E. G. TIMOSHENKO, YU. A. KUZNETSOV, AND K. A. DAWSON 57

natesX, ascribed to theth monomer. It is assumed that the values correspond to the bad solvent conditiamere the
long-time-scale evolution of conformational changes is welleffective two-body attraction tends to compact the chain
represented by the phenomenological Langevin equation, The set of coupling$l,} expresses the chemical compo-
which upon neglecting the backflow effect of the solventsition, or using the biological terminology, the primary se-

may be written as quence of a heteropolymer. For simplicity, in the consequent
sections we shall consider examples for which these con-

d_ H stants can be parametrized in a simple way: Ao, where

SoggXn=~ ax, " (), (D Variabless, can only take three values:1, 1, or O corre-

_ o sponding to(a) hydrophobic (b) hydrophilic, and(c) “neu-
where,, is the “bare” friction constant per monomer. For a tral” monomers, respectively. The parameteis called the
discussion of the hydrodynamic interaction we refer thedegree of amphiphilicity of the chain. Note that for more

reader to Appendix A. The thermal fluctuations are incorpo-complicated than binary sequences there is another relevant
rated via the Gaussian noise which, according to the Einsteigispersion, §,)2=(1/N)= 02, and the combinatiodA ,
law, is characterized by the second momentum, is a more appropriate variable.

(7 (V) 75, (1)) =2kgTEp 0™ O S(E =), 2 lIl. THE GSC KINETIC EQUATIONS

where the Greek indices denote the spatial components of |n Ref.[11] we have derived a s¢é18) of the GSC kinetic
three dimensional3D) vectors. equations for the equal-time correlation functions of the Fou-
In the current treatment the solvent is effectively excluded;o, transforms of monomer coordinatéﬁA/(t) There. at

from the consider@tiohlS] and the rgsulting monomer intgr- he end of Sec. Il, we have mentioned that a polymer with no
actions are described by the effective free energy functmnat)eriodiC structure may be described by choosing the number

K K of blocksM =1. The equations for the correlation functions,
H=5 20 (X=X )™+ 5 2 (Xnsat Xy 1= 2Xn)?

Fooet (D=3 X ()X (1)), (5)
o J-1
+ E 2 ud H 8(X, —X.) 3) contain some redundancies and also are intermixed with the
=2 Tn} Ly Mier TN diffusive degree of freedom describing the motion of the

center of mass. Obviously, for a single chain the latter can be
where, in principleugf@ are allowed to have any dependenceeasily decoupled from the intramolecular degrees of freedom
on the site indice$¢n}={n,, ... ,nj}. by introducing the mean-squared distances between pairs of
The first two terms in Eq(3) describe the connectivity monomers,
and the stiffness of the chain. Their coefficients have the
following simple meaningk=kgT/I? and k=kgT\/I® with D (1) = 5{(Xin(t) = X (1)) 2 = Frnmt Frnvree — 2 F ey -
| and\ called the statistical segment length and the persis- (6)
tent length[4,16], respectively. Apart from these interac-
tions, local along the chain, there are also long-range volum# turns out that, from Eq(18) in Ref. [11], after certain
interactions represented by the virial-type expan$®] in algebraic manipulations one can obtain a closed set of equa-
Eq. (3). The latter reflects the hard-core repulsion and weakions for the quantitie® nqy (t).
attraction between monomers, but also the effective interac- Taking into account the additional bending energy contri-
tion mediated by the solvent-monomer Coup"ngs bution in EQ(3), the GSC equations may be written down in
The coefficients in this expansion may be calculated aghe most general form as follows:
functions of the temperature and the parameters of molecular
interaction. However, for our purposes we do not need tdb d
know their explicit form here as we shall keep only a few 2 dt
first terms. Appropriate coefficients then may be viewed as
independent phenomenological parameters that could be di- +(mem) = «(Omuv m+2m+1
rectly related to experimentally measurable quantities.
In Refs.[11,13 we have discussed that the case of am-

D= 2kBT(1_ 5mm’) + k(Dmm’,m+lm+ Dmm’,mflm

+ Dmm’,m—2m—1_ 3Dmm’,m—1m_ 3Dmm’,m+1m

phiphilic heteropolymers, for which monomers differ only in * agﬂ;

the monomer-solvent coupling constants, corresponds to the +(memH))+ > > RN
following choice of site-dependent second virial coefficients J=2 {n} (detA™" %)
in Eq. (3),

J-1
A1) om " _am _ am’
Xi,j2:1 A'l (5”1+ é\’Tiﬂ é\”i+1 5“1)

A
U2, =u@+ L1+ 1), ;|n=o. (4)

X Dmm’,nlnle

)
The mean second virial coefficient?) is associated with the . . .

quality of the solvent: positive values correspond to the good'nere we have introduced t_he(jc_)Llj)r—pow!t correlation func-
solvent (where effective two-body repulsion of monomers tONS, Dy nnv, @nd the matrixA i~ of size J—1) with

results in the extended coil conformatjpand the negative the cofactorKi(j“"_l),
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_%(Dmn"'Dm’n’_Dmn’_Dm’n)- (8)

Dmm’,nn’E

Ai(iJ_l)E NN 1M1+ 1” ©)
Similarly to Eg. (31) in Ref. [11] for the mean energy¥
=(H) we have

3k

ZED

n

3k
& nnfl,nnfl"' 7 zn: (2Dn+ln,n+1n

+ 2Dn71n,n71n_ I:)nfanrl,n71n+l)

2 % Ufp)(deta 0= 1)) =372 (10)
=2 {n

6803

de(R+ €)

3
S=zkglim In (14

2

e—0

Since the matrix R+ €l) is nondegenerate we can easily
differentiate Eq.(14) so that

. J
QikEllmZ DIJ —Tr In(R+ 61)
e0T Dy

(15

JR B
:z DijTrO (9Dk] 'RO l>:(A0)ik!

where inside the trace Jover the N—1)-dimensional sub-
space projected out b the matrixR becomes invertible

It is interesting to note that in the case of the homopoly-with the inverse denoted &}1. This allows us to obtain the

mer the right-hand side of the kinetic equatidiis may be

combination that appears in the kinetic equations,

rewritten via the instantaneous gradients of the variational
free energy by introducing the normal modsese Eq(5) in

Ref. [17]]. This establishes the connection of the stationary
limit of our kinetic approach with the equilibrium theory, in
which we recover the Gibbs-Bogoliubov variational prin- lat
ciple. We also note that if first order phase transitions arg;,.
involved, one has to possess the expression for the free ep-
ergy in order to determine the phase boundaries by findin%1
the global free energy minimum.

The variational free energyl based on the Gaussian an-
satz for equal-time pair correlation functions contains two
terms, A= E£—TS. Naturally, the mean energy term is given
by Eqg. (10). The second, entropic contribution is calculated
in Appendix B. Let us summarize the result of that calcula-
tion here. One representation for the entropy that is suitable
for numerical analysis is

Qii + Quk— Qik— Qui=2(1— 6 1) (16)
These preliminaries are sufficient to prove the desired re-
ion. Indeed, using Eq16) by direct and tedious differen-
tion of Eq.(10) one can show that the kinetic equatidis

ay be expressed through the instantaneous graditsitef

e variational free energy as

{p d 2
2 dtPmm (V=3 2 [P~ Dawr(1)]

L[ 2ADM®)  2ADW)
IDt(t)  ID (1))

17

This formula, together with Eqg10,19), is the key formal
result of the current work. The structure of EG7) is suffi-
ciently nontrivial to be guessed from phenomenological ar-
guments and has been derived in a systematic manner pro-
theceeding from Eq(7).
We would like to comment here that although, for sim-
plicity, we have presented the explicit formulas above for a

e

S=3kgIn deRN" V= %kBIn(

where we have wused the determinant of
(N—1)-dimensional major submatrix of the matrix,

1 1 ring polymer, our current formalism is general and covariant.
Ron=— 2 Dimnim = — EAO- D-A°, (12 In fact, the kinetic equation@l7) are valid for any topology
N mn of the chain. Thus, it is straightforward to consider more

) ) complicated topologies such as a star, brush, network,
and the matrixD obviously has the elements equal@q, ..  pranched chain, and so on. For that it is sufficient to modify
The reason for appearance of the truncated matrix is that W8nly the spring and stiffness terms in E@), and, respec-
haye exglude.d the zero elgenvalueR)feIa'Fed to the trans- tjvely, in Eq. (10). For example, to describe an open chain
Iatlona_l invariance. Here we ha_ve also introduced the ( gne has simply to suppress the term witk O in the con-
—1)-dimensional orthogonal projecté’ such that nectivity contribution, and the terms with=0,N—1 in the
stiffness contribution to the energy. We undertake a detailed
comparison of ring versus open homopolymers in kinetics at
the collapse transition of the homopolymer in a separate
work [19]. Another interesting possibility is that the general
equation(17) is also valid for models with different ways of
has obviously one zero eigenvalue ade 1 degenerate ei- representing the connectivity and stiffness. For example, the
genvalues equal to 1. freely rotating mode[4] can be obtained by suppressing the

However, for analytical treatment it is more convenient tofirst two terms in Eq.(10) and instead keeping fixed the
obtain a slightly different expression by regularizing the zerofollowing mean-squared ~ distancesD y, . 1=bj and
eigenvalueli.e., by imposing the constraii,X,=0 as a  Dpy,m+2=4b3sin?d2, whereb, and ¢ are the bond length
“soft” condition in Eq. (B1)], and angle. This is easy to prove by adding appropriate

(A%2=A% (A9)T=A,, §<A°>nk=o, (13

with the matrix elements A°) = Onx— LN. This matrix
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“soft” constraints to the free energy functional and taking ‘ T
the consequent limit in Eq17), so that they becoméfunc- _er
tions in the partition function. al? Coil 0
Finally, let us introduce two main observables: the mean- Y —
squared radius of gyration and the degree of microphas¢ @ T ) =
separatiorj12], 10 | Frustrated Phases
1
2__
RQ_Zsz, D 20 Globule
mm
1 -30 |
V=—— > W2 -uDyy. (19 30(ab)
NZRsAAO. mm’ mm .40 . . X S Tl
(4] 5 10 15 20 25 30

The second parameter has a meaning of the dimensionless

correlation of the matrices of the relative two-body interac- FIG. 1. The phase diagram of copolymer sequence &) (

tion and the mean-squared distances. For heteropolymefshort block in terms of the mean second virial coefficieuf)

with two types of monomers it characterizes the differenceand the amphiphilicityA (both in unitskgT£®). CurvesC and S
between the mean-squared radii of gyration of hydrophiliccorrespond, respectively, to the collapse and the microphase sepa-
and hydrophobic species, and for the symmetric compositiofﬁ“on continuous transitions. Curveandll correspond to discon-

with their numbers equal we have a simple relatioh: tinuous transitions to the frustrated phases. “Spinodal” cuiVes
2 2 2 andIl” bound the regions of metastability of the frustrated states.
=[Rj(b)—R&(a)]/(2RY). g Y

Transition curves and boundaries distinguishing different frustrated

sates are not depicted.
IV. NUMERICAL RESULTS

The self-consistent kinetic equatioft?) have been stud- eters: the third virial coefficients’®), ,
ied numerically using the explicit formula€1,C2,C4 for stiffnessk=0 as we did in Ref[11].
the effective potentialésee Appendix ¢ and the expression  Now, we turn to discussion of concrete results. We have
given by the first term in the right-hand side of E@) for  studied ring chains of lengths= 30, 60, and 90. We shall
the entropic contribution. We used the fifth order adaptivepresent here the most Comp|ete resultsNer60 and discuss
step Runge-Kutta methof®20] to improve stability of the the N dependence only briefly. We have examined many
solution which, for large amphiphilicity paramet&ris char-  different sequences. However, we present our data in this
acterized by a rather rugged free energy landscape. We nofper only for three particular choices that we found most
that such a kinetic method for finding the equilibrium distri- typical and illustrative of the heteropolymer behavior. These
butions is more reliable and efficient than the standard methgre chains of: 304b) blocks, 10 @aabbb blocks and 2
ods of free energy minimization if there are many mountaingapacbbcabcchcaaacbccchbaacbgcalocks, which
and valleys on its surface. We also refrain from study of theye call the “short” blocks, “long” blocks, and “random”

influence of the hydrodynamics in this paper, for the analysigequences, respectivelsee the end of Sec. Il for the mono-
and results are complicated enough already. Besides, the hier notationg

drodynamics in the preaveraged approximation does not af-
fect the equilibrium state, which is recovered by taking the
stationary limit in the kinetic equations. w0l ]

We include the volume interactions up to the three-body ;(2) Coil I
terms only, i.e.ufy)=0 for J>3. As can be seen from Egs.
(17,C2 the computational time per time step scales with the (O
chain length as.~N?3 here. This performance is intermedi-
ate between that of the homopolynigr- N2 [14,17 and that or
of the random copolymet,~N* [12,13. The performance
of the formalism in Ref[11] wast.~K*M?, whereK and 21 Globule .
M are the block length and number of blocks, respectively. ' MPS Globule
Besides, that formalism relied on the use of complex vari- AN
ables, and the unitary transformation to the real basis was nc
an easily automated task for complicated sequences. More (5) ™.
over, the treatment of the diffusive mode was nontrivial and %, 5 0 15 0
sequence dependent. Thus, in every respect, the current
scheme is most attractive for the study of heteropolymer se- FIG. 2. The phase diagram of copolymer sequence 10
quences from the computational point of view. (aaabbb (long blocks in terms of the mean second virial coeffi-

It is natural to work here with combination  cientu®® and the amphiphilicityA (both in unitskgT£3). For large
= (kgT/k)¥? and 7= ¢, /k as the units of size and time. We values ofA the collapse transition becomes discontinutusvel)
choosek=1, kgT=1 and{,=1 to fix £ and 7 equal to  and it is accompanied by microphase separats®e also Figs. 5
unity. In addition, we fix the following interaction param- and 6. Curvesl’ and!” are spinodals.

=10kgT£® and the

30 }

10(aaabbb)

L
25 30
A ——
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Frustrated Phases

20 Globule

-30

[ 2(abacbbcabccbcaaacbcccbbaacbc\c\ér)\ """"
-40 . L 2 (S) \\ .

o 5 10 15 20 25 30

A. Equilibrium phase diagrams

The phase diagrams in terms of the mean second virial

coefficientUz and the amphiphilicityA for the above men-
tioned three sequences are presented in Figs. 1-3. For posi-

tive values ofu® and comparatively small values af the
conformational state of the chain is akin to a homopolymer

extended coi[see Fig. 4a)]. By decreasing® to the nega-
tive region the chain is caused to undergo a continuous
(second-order-like collapse transition(curve C), that is
characterized by a rapid fall of the radius of gyrati@i]
(see Fig. 1 of Ref{14]) and the change of the fractal dimen-
sion. Proceeding from the collapsed globule at a fixed nega-

tive u® the increase of the amphiphilicity also causes a

FIG. 3. The phase diagram of the random sequence Zontinuous transitioricurve S) to the microphase separated

(abacbbcabccbcaaacbcccbbaachgimaterms of the mean

second virial coefficient® and the amphiphilicityA (both in units
ksTL3). Other notations are as in Fig. 1.

(o) &

(MPS) globule[22]. During this transition the system size,
Ry, monotonically increaseee Fig. $ and the mean en-
ergy £ decreases in agreement with our earlier results in

(d)§

FIG. 4. The mean-squared distances mdijx,, for the short blocks copolymer 3@p) at A=20. (a—d) correspond, respectively, to
u®@=15, —21, —30, and—40 (in units kg T£%). Indicesm,m’ start counting from the upper-left corner. Each matrix elenizpt, is

denoted by a quadratic cell with varying degrees of black color, the darkest and the lightest cells corresponding, respectively, to the smallest

and to the largest mean-squared distances. The diagonal elements are not paintBql,ginée For the coil(@ D,y elements increase
monotonically on moving away from the diagonal towards the half-ring distance along the chain. In frustratetbgales,,, possesses
some number of clusters with monomers having smaller distances between each other. For the MP$&dybhyilereflects the structure
of the two-body interaction matrin®  and consists of similar elementary cells.

mm
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1.8 . . : . . y 35
2 T f'/’ 9 30
Ry J Ry 10(aaabbb)
er 0 1 25

20

0 ; 1I0 1‘5 2‘0 AZIS . 30 0-50 -;;o -:;0 -z;o -1.0
FIG. 5. Plot of the mean-squared radius of gyralﬁt,ﬁw(in units FIG. 7. Plot of the mean-squared radius of gyrauRé\(in units

£?) vs the amphiphilicityA (in unitskgT£3) for different sequences £2) vs the second virial coefficiert® (in units kgT£3) for 10

(from top to botton: long plocks, short blocks, and the random (3aapbl copolymer. Here and in Figs. 6, 9, and AG- 30, solid

sequence. Here we have fixet? = —40. lines correspond to values of observables in the main free energy

minimum and dashed lines—in the metastable minima.
Refs.[23,11]. The former change is more pronounced for the
long blocks compared to other sequences, for which the COMNore complicated. Starting from some value fofand for

nectivity constraints impede formation of structures with a . —2) . .
hydrophilic shell and hydrophobic core. The MPS order pa_|ntermed|ate values af .tr_\ere appear additional solutions
rameter¥ (see Fig. 6 increases almost linearly for smal corresponding to local minima of the free energy. The broad

then after the transition asymptotically saturates. region where this could take place is bounded by cuives
The transition from the coil at large values Afto the ~ @nd!l” inFigs. 1, 3. With increasind the number of such

MPS globule turns out to be more complicated, and esseriPlutions grows quickly. Significantly, in a region of the
tially dependent on the sequence. In case of the u|onguphase diagram some of these become the main free energy

blocks (Fig. 2) the collapse transition to the MPS globule Minimum. As the number of such solutions grows roughly
becomes discontinuouffirst-order-lika. Thus, inside the €xPonentially with the chain length, we do not attempt to
boundaries of metastability, designated by spinodaland dra\(v all their boundarles dimetagstability. Instead, we _shall
", there are two competing minima of the free energy: thedesignate them collectively drustratedphases, explaining
coil and the MPS globule. The former minimum is charac-thiS terminology below.

terized by a large sizB, (on the rights of Fig. Yand a small An important point here is that, as our analysis shows,
MPS order parameteb (Fig. 8), while for the latter mini- these solutions become dominant in a narrow region of the

mum the situation is reversddee the left-hand side of Figs. Phase diagram due to a subtle competition between the mean

2,8). The depths of the free energy minima become exactiy?N€'9y and the entropy. The MPS globule is entropically
equal on the transition cuniein Fig. 2. unfavorable there because the overall shrinking force is in-

For the short blockéFig. 1), as well as for many random sufficiently strc_)ng. The yalues (RS and¥ are intermediate
sequencessuch as in Fig. B the phase diagram is much for these solutlens and lie betvyeen those of the coil and MPS
globule (see Figs. 9, 10 In this sense, we can call them

1

‘ EBEEEEEM 02
i PrL s sl ‘
v 08| st
e \Ij
-
,"‘/
;f’*,
£
0s | 7%
F ner'Ja
(=}
EIE‘
o 05
v 2
p o
0.4 r EE,H A 0.4
Pl
/‘ =
" 03
£
02} # "
J JZIE 0.2 |
o1 L 10(aaabbh)
° R R . R . .
10 20 30 a0 50 60 | e
JAN— ° . X . deoe
-50 -40 -30 -20 -10 0 (3 10
U D —

FIG. 6. Plot of the parameter of microphase separafiovs the
amphiphilicity A (in units kgT£®) for different sequences: long FIG. 8. Plot of the parameter of microphase separafiovs the
blocks (pluses, short blocks(diamonds, and the random sequence second virial coefficienu® (in units keT£3) for 10 (aaabbh
(quadrangles Here we have fixed® = — 40. copolymer.
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35 y y y y y symmetries, and therefore only the current version of the
method that takes into account all degrees of freedom can
1 describe them. Thus, the property9) is no longer valid.
This phenomenon describes formation of local frustrated het-
erogeneitiegsee Figs. t,0)] in which pieces of the chain
form MPS cluster$23] that are prevented from further coa-
lescing by their hydrophilic shells and high entropic barriers.
5L | The role of spontaneous symmetry breaking is well rec-
ognized in equilibrium statistical mechanics. What is striking
10} 1 here is that the number of distinct spontaneously broken
states becomes huge for large system sizes. This diversity
P 1 and a special foliating structure of various branches leads in
Lo sssooooseoosasssosesonet the thermodynamic limit to what is known as a spin-glass-
%50 20 =0 20 0 ° ) 10 like frozen phas§24] of random copolymerésee, e.g., Refs.
u [12,13 and numerous references thejeMe shall return to
FIG. 9. Plot of the mean-squared radius of gyraifn(in units ~ the issue of spontaneous symmetry breaking in kinetics in

£?) vs the second virial coefficient® (in units kgT£%) for the ~ S€C: IV B. ) i .
random sequence. Even though the kinematic symmetries are not present

from the outset for arbitrary, or random, sequences, the struc-
nonfully compacted and misfolded states. In comparison, théire of the phase diagrarfig. 3) and behavior of main
MPS globule[see Fig. 4d)] has a more compact size and ObservablesFigs. 9,10 remain very similar. It is the particu-

better optimized volume interactions, which is manifested inf@r structure, number, and shape of boundaries of frustrated
a higher value of¥. phases that are very sensitive to the sequence. The symmetry

Most interesting is the local structure of these additionathat may be broken in this case has a subtler, dynamic mean-

phases. Let us discuss the particular example of thea) ( INg and may be expressed in terms of the replica formalism
sequence. The formalism of Réfl1] has used heavily the [24]- In a sense, for a very long periodic chain, blocks may
assumption of certain symmetries for the mean-squared dif€ viewed as identical copies of a smaller block-length
tancesD v due to which these variables can take oni 3 chain. Thus, it is by no means surprising that the replica

independent values, wheké is the number of blocks. These Symmetry breaking in our case for periodic systems takes
symmetries are the block translation invariance such an explicit manifestation in the breaking of the block

translational symmetry. This important point was completely
Dm+kim +ki=Dmms, foranym, m’, andi, (190  missed, nor could it be discovered, in our considerations of

Ref.[11]. Therefore we have achieved here a new significant
whereK is the block length, and the more complicated in-insight into the problem by a simple extension of the GSC
version symmetry discussed in detail in Rgf1]. These method.
symmetries have a simple meaning—a renumbering of An interesting feature of our phase diagrams is that the
monomers does change the average properties over the stagion between spinodals andll”, designating where the
tistical ensemble—the interactions of a ring chain remain thdrustrated phases can exist, expands dramatically with in-
same. However, the maximal possible number of dynamicatreasing chain length. For example, &t=25, for the 15
variables in the GSC method is much larger and is equal tpab) sequence it lies approximately betweenl19< u®
N(N—1)/2. Surprisingly, it turns out that the frustrated <10, while for the 30 4b)—between— 39<u®<11, and
phases are characterized by spontaneous breaking of thesg cyrvell” goes nearly vertically downwards for larger

According to the above interpretation, for infinitely long

| 2(abacbbcabecbeaaachecebbaacheca)

25 |

20

chain somewhere in this broad region and close to its bound-
aries there are the actual glass transition curves, which
should be determined using proper glass order parameters.
Thus, for short chains the curvésandIl” may be viewed
as approximate indicators of the freezing transitions. The
. former distinguishes between the homopolymerlike and the
04 1 random coil, while the latter—between the homopolymerlike
(liquid) and the frozen globules. As for the region of stable
MPS globule, it gets relatively smaller for larger systems.
02| | That is not surprising—the frustrated phases expand and the
phase separation involving larger spatial scales requires
- 2(abacbbeabecbeasacheecbbascheca) \M” stronger interactions. Having understood the identifications
. ) ) ) e [l | for the spinodals, we now can recognize in Figs. 1 and 3 the
-50 40 30 20 -0 0 2 1 main features of the phase diagram, though rather distorted,
of the random copolymer model presented in R&8].

FIG. 10. Plot of the parameter of microphase separaffors Finally, let us comment on the phase diagram of the
the second virial coefficient® (in units kgT£3) for the random  “long” blocks (Fig. 2). The microphase separation is obvi-
sequence. ously easier in this case and it dominates for large values of

0.3 |

0.

=
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(A) — 60(c) (homopolymer) i ©)
(B) — 30(ab) v o7
(C) — 10(aaabbh) 06 | (B) — 30(ab)
(D) — 2(abachhcabecbeaaacheeebbaacheea) ] ) (C) — 10(aaabbb)
0.5 F (D) — 2(abacbbcabecbeaaachecchbaacheea) J
\\M |
M
(D)
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0 o 2‘0 4‘0 6‘0 BIO 100 3‘0 100
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FIG. 11. Time evolution {( is in units7) of the mean squared FIG. 12. Time evolution (is in units 7') of the parameter of
radius of gyratiorR] (in units £?) for different sequences after an Mmicrophase separatio¥ for different sequences after the same
instantaneous quench from the coil staf®)=15 andA=0, to the ~ duénch as in Fig. 11.
region withu®® = — 25 andA =30.

tent with those of Ref.11] only beyond the parameter region

A, so that the frustrated phases are suppressed. We fould the frustrated phases, which are charact_eriz_ed by sponta-
that, qualitatively, in order to form a frustrated phase, in a€0Us breaking of the block symmetry. In kinetics the situa-
finite range ofA values, the number ghot necessarily iden- 10N i somewhat similar, but the consistency with the previ-
tical) pieces of the chain with competing interactions shouldUs simplified formalism is even more limited. In reality, the
be larger than some critical number, in principle, weaklyM&an squared radius of gyration remains close to that of the
dependent ol Here are a few examples conforming to this  effective” homopolymer (curve A) during the first kinetic
qualitative criterion: the phase diagram of 1@bj behaves Stage[see Eq.(74) in Ref. [11]]. Interestingly, this is not
roughly like that of 10 @aabbB, but for 15 @b) it behaves quite so for more complicated sequences. The MPS param-
similarly to 30 (ab); while for 15 (aabh) the phase diagram ©ter ¥ (t) for the (ab) copolymer grows S|O\1N|y in a way
looks like that of 15 aaabbl) at small and moderate values Similar to the splitting of the Fourier mode&(t) — Fq (1)

of A. It becomes like that of 30a(b) for much larger values for large indicesy [see Fig. 4 in Ref{11]]. However, con-

of the amphiphilicity. It is reasonable to conjecture, there-trary to the strange conclusion in R¢1L1] that the kinetics
fore, that for a large number o@abbl) blocks, as well as ©f the (ab) copolymer proceeds faster than for the ho-

for extremely high values oA and just 10 blocks, the frus- Mopolymer, we now have @atural from the point of view
trated phases may be found again. of Monte Carlo simulation$23]), slowing down of copoly-

mer kinetics. Analysis oD,y (t) shows that this effect is
entirely due to the spontaneous breaking of the block sym-
B. Folding kinetics metry in kinetics, something that has not been accounted for
Here we shall consider the time evolution of the confor-in Ref. [11]. Indeed, in Fig. 14 we exhibit the time depen-
mational state of the system away from its initial equilibrium dence of the mean squared distances between two nearest
after it has been subjected to an instantaneous temperatuf¥drophobic monomer® . . o(t) for the (ab) copolymer

jump that causes the two-body interaction parameuTéi"é in kinetics after a quench to the MPS globule region. For

and A to change. We are interested in quenches from the
homopolymer coil, where all monomers are equally hydro- ’

philic (u®>0 andA=0), to the region of parameters cor-
responding to the MPS globular state, so that dhgpecies
became strongly hydrophobic and tbespecies remained
weakly hydrophilic (<0 andA=|u®)).

The temporal behavior of the mean-squared radius of gy-
ration Rg(t), the MPS parameteP (t), and the instantaneous
free energy.A(t) in kinetics of folding for different se-
guences is presented in Figs. 11-13. For the homopolyme
(curvesA) Rs and A decrease monotonically to their final
equilibrium values, while the MPS paramet® remains ;
identically zero, for there is no distinction between different - ©)
monomer species. These curves agree with the earlier resul %, 2 20 %0 %0 100
of Ref.[14] and serve for reference purposes here. t—

Now let us discuss the curve® corresponding to the FIG. 13. Time evolution {(is in units 7)) of the instantaneous
periodic @b) sequence. In the previous subsection we havéree energyA (in unitskgT ) for different sequences after the same
mentioned that the current formalism yields results consisguench as in Fig. 11.

A) — 60(c) (homopolymer)
B) — 30(ab)
C) — 10{aaabbb)

D) — 2(abacbhcabecheaaachecchbaacheca) 4
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(
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FIG. 14. Time evolution{(is in units7") of the mean squared
distances between nearastnonomerD y . »(t) (in units £2) for
30 (ab) copolymer in kinetics after the quench with the final two-

body parameterai®® = —50 andA = 30.

early as well as for late times these functions for diffedent
are exactly equal to each other. However, there is a well
defined intermediate period in time where the block symme-
try is spectacularly broke(see Fig. 15 We remark that the
symmetry breaks and restores in a steplike magaer,Dy ,

andD 4 ¢ join together at=10, earlier than with other func-
tions) and also that this effect is relatively strong.

We would like to make a general comment here on the
nature of spontaneous symmetry breaking in kinetics. Thus,
normally in such situations at equilibrium there exist a ther-
modynamically unstable symmetric free energy minimum
and a disjoint set of symmetry broken minima, which may be
transformed to each other by the residual subgroup of sym-
metry transformations. These states may also be obtained
kinetically as infinite time limits of the time evolution start-
ing from any; for example, the symmetric initial state, which
happens to be the main free energy minimum before the
guench.

However, the formal structure of the GSC kinetic equa-
tions (17) is such that they yield a symmetric solution at any
moment in time provided one proceeds from the symmetric
initial condition. A question arises then—how can one obtain
the kinetics that could lead eventually to the multitude of
final states with broken symmetry? The answer is clear in the
exact theory—there are fluctuations that can transform be-
tween different spontaneously broken states in kinetics.

The GSC method presents, though an optimized and im-
proved but still a mean-field-type theory, where such fluctua-
tions are not properly included. Manifestation of the kinetic
spontaneous symmetry breaking takes a different form there.
Namely, at some moment in time the symmetric solution of
the kinetic equations becomes unstable with respect to per-
turbations(whether of the initial condition, or of the interac-
tion matrix,uﬁ),). Thus, for example, one can add an infini-
tesimal symmetry breaking terma,, to the two-body

50 8 R R
i P U D
5 ¢ I PO 20 B A

6809

FIG. 15. D,,(t) matrix for the short blocks copolymer 30
(ab) in kinetics after the same quench as in Fig. (a9 corre-

interaction matrix and consider the limit of vanishing pertur-gpong; respectively, to the following moments in tinbe:4.6, 11,

bation in the solution. Different choices of the formaf,,  and 12.9. See also caption to Fig. 4 for more details. The kinetic
in the unperturbed limit would yield all possible types of process proceeds through formation of locally collapsed and phase-

spontaneously broken kinetic evolution, which are, ofseparated clusters. The initial conformation is similar to Fig),4

course, equivalent to each other. Numerically, such a reguthen some clusters appear, coalesce into larger ones, until they

larization procedure is not even necessary. There is alwaysventually unify forming the MPS globulesimilar to Fig. 4d)].
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an intrinsic perturbation due to computer round off and nu-+that the number of local minima affects the number of stair
merical integration errors. Thus, if the symmetry is favorablesteps, whereas the depth of minima determines the lengths of
to be kinetically broken somewhere, numerically one obtainghe steps. This interpretation is highly supported by the
one of the spontaneously broken solutions there, rather thastrong dependence of the staircase structure on the chain
the unstable symmetric solution, unless the symmetry condiength, the sequence, and the interaction parameters, for it is
tions have been imposed by hand. In this situation improveknown how the frequency and depths of local potential en-
ment of the numerical precision would have no profoundergy minima depend on these factors. On the one hand, it is
effect—the kinetic process either does not change, or caknown that for a long heteropolymer chain the number of
change only up to an experimentally unobservable residudbcal minima grows exponentially with the chain lendth
symmetry transformation. and indeed we see that the number of stepglft) grows

We note also that such a procedure of perturbing the injust as quickly. On the other hand, increasing the amphiphi-
teraction matrix here is analogous to introducing an externalcity A leads to higher depths of local minima as well as an
magnetic field in the Ising model. The spontaneous magnencrease in their number, and indeed the stepsi{h) be-
tization of a macroscopic sample of ferromagnet may be&ome longer and more numerous. Let us give another ex-
achieved by gradually switching off the external magneticample of such a connection. For the “long” blocks the in-
field. In the absence of the field there would remain domainseractions are less frustrated than, say, for thb)(blocks,
with long-range order, but varying directions of the sponta-thus there are far fewer local energy minima, but the barrier
neous magnetization canceling each other. Unfortunately, iBetween the coil and MPS globule is higher. As a result, the
our case it is not evident how to experimentally implementkinetic procesgcurve C in Fig. 13 proceeds through only
an analogous gradual switching off af . one rather long kinetically arrested step.

Now returning to our results, in Fig. 11 one can see that It is worthwhile to make a comment here on the notion of
the folding kinetics for the §b) copolymer is about three kinetic stages introduced in earlier work®5,14,23. Those
times slower than for the homopolymer of the same lengthwe associated with typical structures of the conformation and
the effect being even stronger for other sequences we hawgcompanying kinetic laws. We distinguished at least the
considered. From Fig. 12 and the phase diagrams in Fig$ollowing kinetic stages at the collapse of the homopolymer:
1-3, it is evident that the considered quench results in thearly time necklace formation, middle time coarsening, and a
final state of the MPS globule for the “long” blockgurve  number of final relaxational processes. The multistep charac-
C), whereas it results in the frustrated phases for two otheter of folding observed in this work affects the middle kinetic
sequencescurvesB andD). For the latter phases the MPS stage, resulting in its considerable complication and splitting
parameter is smaller and the radius is larger than for the MPfito multiple substages with respective complex kinetic laws
globule, as we already know from the equilibrium consider-that are determined by the sequence. Universality of such
ations. It is interesting to note that the final relaxation to thekinetic laws is doubtful, but probably it can be recovered by
frustrated phases may be rather unusual. For example, @veraging over certain classes of sequences with similar fold-
Figs. 11,12 for the “random” sequendﬁ(t) increases and ing properties.

W (t) decreases during the last kinetic stage, which is the Apparently, in the GSC method the kinetics is a motion in
converse of the behavior at final relaxations in other caseshe space ofN(N—1)/2 averaged dynamic variables,
Another unusual observation is that for some sequences the,,/(t), and it is determined by the profile of the free en-
parameter may even become negative during some time inergy. It may be instructive, using Figs. 11 and 13, to present
kinetics, something we never observed at equilibrium. Thighe kinetics via a parametric plot of vs Ry, the latter being
shows that the structure of nonequilibrium conformationsthe main, though not the only, relevant “coordinate” of the
can be very complicated. system. That would produce a kind of “bottleneck” picture

The instantaneous free energy(t) depicted in Fig. 13 that was much discussed by P. Wolynes and otf28$ in
turns out to be the quantity most sensitive to the conformarelation to the protein folding problem. This indicates that
tional structure of the nonequilibrium state. From that figureour method produces behavior that permits interpretation in
it strikes us that, while the homopolymer folding is a singleterms of phenomenological energy landscape models.
smooth relaxational process, the folding of heteropolymers Finally, let us utilize once again the connection between
proceeds through a multistep acceleration-deceleration prdhe kinetic evolution of the free energy and the ruggedness of
cess. The flat regions of a staircaselike function corresponthe potential energy landscape. This would allow us to shed
to temporary kinetic arrest of the system in transient nonsome light on the general structure of the energy landscape
equilibrium (mostly symmetry brokenconformations. Gen- for complex heteropolymers. Thus, a typical example of the
erally speaking, in the GSC method we deal with the time‘random” sequence kinetickcurveD in Fig. 13 shows first
evolution of a statistical ensemble of various initial confor- a fast drop, then the appearance of short steps that are grow-
mations. The flat regions appear due to transient trappings afg longer with time, until the last step becomes infinite. This
various members of the ensemble in their local shallow entranslates to the following equivalent energy landscape ver-
ergy minima. Since such minima are encountered at differerdus some collective coordinate: first there is a rapid drop
moments in time for different members of the ensembleaway from the unstable coil state, then the surface flattens
their influence on the overall time evolution of averaged ob-and small wrinkles appear on it; they grow larger in ampli-
servables is manifested in a smooth characteristic slowintude gradually becoming high mountains and deep valleys,
down. until there is eventually a very deep ravine corresponding to

Qualitatively then, summarizing the data for various se-the “ground” state of the system separated by a very high
guences, most of which we have suppressed here, we can sagrrier from other minima. In our view, the latter picture
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bears a remarkable resemblance to a typical mean-field efirst to one of the misfolded states and can undergo a conse-
ergy landscape in spin glass systei@4] recently discussed quent nucleation process to the main thermodynamic state of
by Parisi[27]. This observation seems encouraging to us andhe microphase separated globule.

indicates that the GSC method is capable of describing very These results for equilibrium and kinetics confirm many
complex systems, although it is too detailed and expensive ipredictions of the earlier treatment adopted for random het-
its complete form for description on a macroscopic scaleeropolymers in Ref[12] based on a quasiperturbative aver-
Nevertheless, by taking the quenched disorder averagingging of the GSC equations over the quenched disorder. The
(similarly to Ref.[12]) it is possible to achieve an adequate latter approach describes a large set of random heteropoly-
description for heteropolymers that is alternative to the repmer sequences with a Gaussian distribution of the monomer
lica formalism. We believe that the underlying connectionamphiphilicity. The kinetics of folding seems to be consis-
between both types of approaches has been clarified to sontent between the previous and current approaches with re-

extent by the current work. spect to main observables such as the radius of gyration,
energy, and MPS parameter. A smooth, slow glasslike relax-
V. CONCLUSION ation in the former approach is produced by averaging over

all different sequences with their particular multistep pro-
In the present work we have extended the Gaussian seltesses of passage through the frustrated states. Although here
consistent method to permit the study of heteropolymersve observe strong dependence of the phase boundaries in the
with complicated primary sequences. This has been achievashuilibrium phase diagram on the primary sequence, the ma-
by transforming the kinetic GSC equations, earlier derivedor conclusion of Refs[12,13 that there are three distinct
for the Fourier modes, to the form containing only the meanglobular states of the homopolymerlik@iquid), frozen
squared distances between pairs of monomers and relatiriglassy, and microphase separatédided globules, and an
these equations to the instantaneous gradients of the variadditional state of the random coil, as well their relative lo-
tional free energy calculated based on the Gibbs-Bogoliuboeation in the diagram, remain valid. We have previously dis-
principle. The revised GSC formalism possesses importardussed that the equilibrium limit of the theory in the treat-
computational advantages; moreover it is fundamentally sument of Ref.[13] had certain deficiencies due to the
perior to its predecessor in that it can describe phenomena afdditional perturbative approximation, which we attempted
spontaneous symmetry breaking and formation of structuralbb remedy phenomenologically. The current fundamental
heterogeneities. scheme is free of any such problems and provides a reliable
We then have applied the extended GSC method to somest ground for development of further approximations.
particular amphiphilic heteropolymers. The equilibrium  We have also discovered that heteropolymer sequences of
phase diagrams for these have been obtained in a systemagiqual length can be roughly divided into distinct classes pos-
manner. Apart from the coil and two globular states we havesessing similar phase diagrams and kinetic folding proper-
discovered that in a wide intermediate region of the phasées. For instance, periodic polymers with a few long blocks
diagram there may be a large number of frustrated partiallygasily undergo microphase separation and for them the frus-
misfolded states. Despite the fact that such states, the numbigated states are suppressed at equilibrium and in kinetics.
of which grows exponentially with the chain length, are There is a view in the scientific community that complex
mostly metastable, some of them become the dominant statandom sequences also permit more refined classification.
in their rather narrow domains. The corresponding potentialhe identification of good folding sequencese, e.g., Ref.
energy profile of the system has a strong resemblance to thg28]) is believed to be an important prerequisite for unravel-
of a typical spin glass system. Thus, we may conclude thaihg the mysteries of proteins.
the transition to these states in the thermodynamic limit cor- In the current paper the GSC method has been applied to
responds to a glassy freezing transition. a single chain problem. However, since the kinetic equations
We note that an observation that for sufficiently long se-(17) are covariant it would be relatively straightforward to
guences of alternating monomefshort” blocks) the mi-  apply it to solutions of many polymers. Formation of non-
crophase separated state is displaced by the region of glasswial mesoscopic globules in copolymer solutions at low
frustrated phases has been known for quite some time armbncentrations has been predicted in the framework of the
well understood in the framework of the density theofi@s method [29] and recently observed experimentall@0].
as a result of the density fluctuations that modify the meanGenerally, the GSC method may be viewed as extension to
field behavior. The block translational symmetry breaking inthe realm of kinetics of the variational treatment, which is a
our approach is another manifestation of the glassy phenonbetter theory than standard mean-field approaches due to a
ena earlier extensively studied for melts of random hetmuch larger number of variational parameters. We should
eropolymers. In addition, we can see how the destruction oddmit, however, that in the complete form numerical solution
the microphase structures occurs for finite-sized systems araf the GSC equations is computationally expensive for sys-
how exactly it depends on a particular sequence. tems of a few hundred of monomers. Nevertheless, as we
The folding kinetics is found to be strongly affected by have recently showh29], in some approximation the GSC
the presence of these transient frustrated states along the léguations can be reduced to those of a simple mean-field
netic pathway. This leads to a complicated kinetic processheory such as the Flory-Huggins one, and some extra cor-
consisting of multiple steps with pronounced slowing downrections to the latter. Importantly, the formalism in terms of
and then acceleration in the folding rate. It is interesting tathe mean-squared distances is valid for description of the
note that a typical fairly heterogeneous chain with weaklyextended coil as well as of the globular states, whereas the
hydrophilic and strongly hydrophobic units folds kinetically density formalism theories are limited to relatively high den-
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sities of the system. The weakest point of the method is the =~ APPENDIX B: THE VARIATIONAL PRINCIPLE
Gaussian form of the trial Hamiltonian, and thus of the cor- We introduce the trace as the intearation over all mono-
relation functions, a matter that has been discussed at some X : gra
length in the pasf25,14. However, based on the covariant mers _coqrdmgtes subject to the constraint tha}t the reference
form of the kinetic equations derived here, we hope, in Somgomt Is fixed in the center of mass of the chain,
not too distant future, to take into account the non-Gaussian N-1
corrections in an analogy to the treatment of the hard-core TrEJ' H dX,é
repulsion for van der Waals systems. n=0

The main strength of the revised GSC approach lies in the . _ _ .
ability to describe a given heteropolymer sequence of finite! '€n the partition function is obtained &,=Tr exp
length, rather than amfinite ensemblef sequences charac- (—H/kgT) with H given by Eq.(3). The & function in Eq.
terized in a certain probabilistic way. This is an inevitable (B1) removes the trivial divergence @ due to the trans-
preliminary step in developing adequate techniques for the/ational invariance. o _ _
oretical modelling of complex biopolymers. Understanding We choose the trial Hamiltonian as an arbitrary linear
of the relation between the chemical compositignimary ~ combination,
sequencieand the 3D equilibriunttetriary) structure, as well H 1
as of the kinetics of folding, in proteins is one of the great _0 _ =D Ko XX + 2 InXoms (B2)
challenges of the modern biotechnological science. We hope keT 2.7 m
that methods like the one we have presented here will take ) ) .
their right place in the collection of new tools for bioinfor- Where we have also introduced arbitrary sourdgs Using

> xn). (B1)

matics. the & function one can exclude, sa}y and derive
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(B3)
APPENDIX A: INCLUSION OF HYDRODYNAMICS where theN— 1 dimensional matrisk is
The Langevin equation with account of the hydrodynamic _
interaction includes the Oseen ten§dy, (K)nn =Knn + Koo— Kno— Kon'- (B4)
d_., v o We can calculate the averages by
= 2 HLL (X)), (A1)
@nn - —1xx _1a2InZO[J]_R_1 85
where¢? is the right-hand side of Eq1) and the noise has = 3 (XnXnrdo=3 9393, =KD, (BY)
the second momentum proportional to the inverse Oseen ten-
sor. where again the latter identity holds only fom’#0. From
In the preaveraged approximation we have these quantities it is straightforward to obtain the mean
squared distances using E®), which also holds only for
e’ \ _ caa _ Omm 1- S n,n’#0.
(Ham? =8 émms €mm = v  3(279)"2p DR " Finally, we want to express all independent parameters of

(A2) the matrixK via the quantitieD,,,,. For this we compute
the following sums applying the abovgfunction constraint,
and the analogs of formuld#5,A6) of Ref. [11] will be

1d 2 Doy =2N2> Foum,

__Dnn’:E o —&nm) T —Torme), - (A3) mm m

2 dt m

1
2 IA E Dmn:_z Dmm +NFqn- (B6)
m 2Nmm/
an/:_gz DnM’—:kBTﬁnn’+E Dnm/Vnym”.
m’ Dn,m,, m’

(A4) Substituting F,,, from the second formula here to E{.2)
and recalling the relatio8) we derive the desired inverse
Explicit expressions for a few first terms in the virial expan- relation (12) for (K™%),,, = Fnr.

sion of the effective potentials, From the partition function(B3) we obtain the “en-
tropic” term Ay=—-TS=—kgT In Zj[0] that yields pre-
Vo= E iz (A5) cisely Eqg.(11). The Gibbs—Bogoliubov variational principle

mm’ 3Dy is then based on minimizing this variational free enexy

= Ag+(H—Hg), with respect to theN(N—1)/2 indepen-
may be found in Appendix C. dent variational parameteB, .
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1. Entropy of the homopolymer

R Dmnm’
For the homopolymer we have the translational invariance Vi = (1= 8mm) 301 En: (detAm+)572
along the chain so thdd,, =D, wherek=|n—n’|. Then nEmm’ mm'n
the matrix(12) may be rewritten as 3 5
S () L
. . B U nEn) den®) T (C2)
Rnn’:Rg_EDnn’r Rg:m; Dy. (B7) n#n’#m
Where (d%(z))mmrmrr: Dmm’Dm”m’ - Drzn_m,’m,,m, .
Let us apply a unitary transformation to the Fourier coordi- It is usually assumed that for negatiu€” the stability of
nates generated by the matrix, the system is ensured by the positivenesa(®*. It turns out,
however, that for the whole range ofr)n, this does not hold
1 2ign and there are additional pathological solutions with singular
fﬁ=N—U2exy{ TN ) (B8) free energy. The reason for this deficiency of the m@8kis

that we have discarded the terms with two coinciding indices
in the three-body contribution. This standard trick is not sat-
By a direct evaluation and recalling the relation for the nor-isfactory therefore, but fortunately it could be remedied by

mal modes, using another prescription for these terms:
1 a E=u® > (8(Xm—Xm) Xy — X))
- 2N1/2§k: Ref Dy=Fq, (B9) m#m’ £m’
+3u® D (8(Xm—Xm))2. (C3)
we see that the matriR=f'-R-f is diagonal with the ei- m#m’

genvalues~Roo=0 and ~qu= NFq. Thus, the logarithm of In Ref. [31] we show that the addition of the latter term,

determinant of the N—1)-dimensional submatrix d&  Which is subdominant in the lardé limit anyway, does not
yields the standard “entropy” of the homopolymgsee Eq.  ¢hange the earlier results for the homopolymer, and even

(3) in Ref.[17]] up to a trivial constant. quantitatively improves the agreement with known results
for the dense globular stafg]. Importantly, for heteropoly-
APPENDIX C: FORMULAS FOR THE EFFECTIVE mers this term removes spurious solutions and makes the
POTENTIALS theory well defined. The corresponding contributions to the

mean energy and the effective potentials are
Two first terms in the virial expansion of the derivatives

(A5) of the mean energy are explicitly given by g3=303 Dr;i”v(a’)
m#m’
A<2)' ~(2)
Vi = (1= 0nm) =55~ = 0w 2 =55, (C) =(1= Sp)6UD 1 — S 6UP X Dt (CH)
mm’ n;:m mn n#nm
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